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ABSTRACT 

Inductive learning can be used to extract rules required 
for an expert system which assists in output analysis for 
system simulation. However, several expamples of the 
system, constituting an instance set, are required for leam- 
ing to take place. Generating the required instance set to 
be used by an inductive learning algorithm is time con- 
suming and complex. This paper is an attempt to clarify 
this problem, discuss its complexity, and suggest context 
related solutions. A procedure for automatic instance gen- 
eration is then proposed. The proposed procedure is a 
combination of three search methods (grid based, forward 
search, backward search). 

1 INTRODUCTION 

Inductive learning can be used to extract rules required for 
an expert system which assists in output analysis for sys- 
tem simulation. This idea as applied to queuing systems 
simulation was discussed in two previous papers, Khosh- 
nevis and Parisay (19931, and Parisay and Khoshnevis 
(1993). In learning the behavior of a system, several ex- 
amples of the system's operation are required for learning 
to take place. In the absence of real examples of a sys- 
tem, such examples may be generated using a simulated 
model of the system. Generating examples using simu- 
lation should be performed systematically. Moreover, it 
is desirable to automate the process of generating usable 
examples. 

In order to apply the inductive learning algorithm, in 
this study, a simulation model is considered to have several 
control-features. These control-features may be some of 
the input parameters, some of the output results, a combi- 
nation of the two, or some performance data collected dur- 
ing model execution. Examples of such control-features 
in a queuing system are: mean inter-arrival time, mean 
service time, mean waiting time in a queue, and system 
throughput. 

To be able to classify some examples of a simulated 
model, the required classes are initially defined. For exam- 
ple, class goal is defined for successful simulation runs and 

class no-goal for unsuccessful runs. An instance is then a 
set of specified values for control-features of a simulation 
model and their related class. Therefore, any change in 
the values of the model parameters creates a new instance. 
An instance is represented as a vector of control-features 
and their values as well as the class to which it belongs. 
The following is an example of an instance which belongs 

(inter-m'val time: Exponential(3), service time: Uni- 
to class goal: 

form(2,4), ..., throughput: 1.5, class: goal} 

In order to generate an instance the following procedure 
is performed: 

1. A value is selected for each input parameter. This set 
of input values is called a tesrpoinr. 

2. The model is then simulated using the test points. 
Consequently a set of values are obtained as the out- 
putresult. This set of output values is called an output 
point. 

3. The output point is analyzed and compared with the 
definition of different classes, then the class that best 
suits the situation is selected. 

In Figure 1, the above procedure is depicted to facili- 
tate later discussions. Here, the collection of all feasible 
points for input parameters have created the input space. 
Similarly, the set of all obtainable output points as an out- 
put result is called the output space. The defined classes 
constitute the class space. A simulation process, which is 
represented as FSO, maps a test point to an output point. 
A class selection criterion, called class criterion, which is 
represented as FCO, maps the output point to a class. 

To perform an inductive learning, an instance set is 
required. The instance set should have the following char- 
acteristics: a) The number of instances should be sufficient 
for effective learning, b) Each instance should be unique 
(not repeated). Also, the quality of instance set may be of 
concern, meaning: 

0 The instances should appropriately represent the in- 
put space, called input space coverage. 
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Figure 1: Elements of the Problem 

0 The number of instances in each class should be suit- 
able for learning, called class space coverage. 

0 The instances should be unique but also represent 
distinct senarios, called instance distinction. 

2 INSTANCE GENERATION 

The process for generating an instance set is called the 
instance generation procedure. Such procedure should 
be designed to satisfy the required characteristics of an 
instance set as mentioned in the previous section. Also, 
possible time limitations should be considered in the pro- 
cedure. Otherwise, it may cause premature termination 
of the procedure (i.e., prior to generation of the desired 
number of instances.) The uniqueness of instances can 
be checked while instances are generated. Distinction of 
instances may be enforced using additional constraints on 
the degree of closeness of two test points. Input space 
coverage can be enforced by partitioning the search space 
by equal size grids or by using Factorial designs (Law 
and Kelton 1991) when the number of input parameters is 
large. 

The most difficult quality of an instance set to achieve is 
the class space coverage. As depicted in Figure 1, the class 
selection depends on class criterion, FC(), and simulation, 
FS(), which is a stochastic process. Therefore, there is no 
guarantee that the selected test points will result in a spe- 
cific class, unless there is a considerable amount of domain 
knowledge which is generally unlikely to exist. Moreover, 
there is usually no information about the possible number 
of instances which belong to any of the identified classes. 
Each class is defined with an anticipation for the existence 
of a number of test points which map to it. In practice, 
however, some classes may never be used in any one of 
the generated instances. 

The class space coverage problem necessitates the use 
of some kind of search method. Selection of a search 
method depends on the definition of classes. For example, 
if there are only two classes as goal and no-goal then a 
partitioning (gridding) of input space can be performed. 
Each test point in a grid element (square, cube, etc.) will 
either achieve or not acheive the goal, and consequently it 
will belong to either the class goal or the class no-goal. If 
number of instances in any of these classes is not sufficient, 

a finer gridding can be performed in a smaller area which 
is promising for obtaining test points from that class. 

In this study several classes are considered. The first 
class is called goal and is assigned to a test point that 
has acheived the goal. The second class is called no- 
improvement and is assigned to a test point that cannot 
achieve the goal withinconstraints of the procedure. Other 
classes are some specified modifications that can be ap- 
plied to input parameters in order to obtain improved test 
points (toward the goal), For example, the modification 
class Ma is defined as: increase inter-arrival mean by ten 
percent. 

The output space has unknown characteristics. It is not 
easy to estimate whether the output’s mesh surface is uni- 
modal or multimodal. Search techniques in Operations 
Research field (Bazaraa and Shetty 1992) are usually suc- 
cessful in cases that meet specific conditions (i.e., continu- 
ity, uni-model, and so on). Such conditions cannot easily 
be proven to exist in our case. The Genetic Algorithm 
(GA) can be used to find the goal but it cannot indicate the 
effect of modification classes on each test point which is 
of importance in this study. However, GA can be used for 
pre-optimization to find the promising regions and then 
to apply another search method for fine tuning (Syrjakow 
and Szczerbicka 1993). Artificial Intelligence (AI) search 
techniques which are of hill climbing nature suit this study 
the most. Two heuristic search methods which are used in 
this study are briefly explained in the following sections. 

2.1 Backward Search 

In backward search, as illustrated in Figure 2, the attempt 
is in finding those test points (i-1) that can lead to a given 
point (i), when a modification class is applied to them. 
Therefore, for each modification class an inverse modifi- 
cation, called inverse modification, should be defined such 
that when applied to a given test point i, it provides a new 
test point i-I .  A new instance is then generated by con- 
sidering the provided test point, i-1, and the modification 
class. The purpose of backward search is to find test points 
such that the goal test point can be reached by applying 
one of the modification classes. 

22 Forward Search 

An AI hill climbing search technique, for example nearest 
neighbor, can be applied to a no-goaZ test point. The 
purpose of the forward search is to find a path of test 
points, and a related modification class for each test point, 
so that the output of any new test point in the path has a 
better chance of getting closer to the goal. 
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3-3: The test points in a forward path are used as instances 
with their related modification class; the leaf will have 
goal or no-improvement class. Step 2 is applied to modification class 

+ pointi pointi-1 * 
I the newly found goal test points. 4 

inverse modification 

Figure 2: Inverse Modificaiton 

3 AN AUTOMATIC INSTANCE GENERATION 
PROCEDURE 

Previous sections attempted to clearify the instance gen- 
eration problem and instance set requirements. This sec- 
tion proposes a practical automatic instance generation 
procedure which can potentially fulfill the requirements. 
The required information for each instance is a test point, 
an output point, and its related class in the class space. 
Classes are goal, no-improvement, and several modifica- 
tion classes. Automatic instance generation has the fol- 
lowing steps: 

Step 1: 

1-1: Grid the input space as desired. 

1-2: Select a test point from each grid and simulate it. 
If output point has achieved the goal go to step 2; 
otherwise go to step 3. 

Step 2: 

2-1: Each test point that its output has achieved the goal 
is assigned the class goal and it is used as an initial 
point in a backward search. 

2-2: The backward search is continued for each recently 
found test point to arrive at new test points. The 
modification class which is used to arrive at the new 
test point is assigned as the test point’s class. 

2-3: If the required instance set is obtained stop, otherwise 
go to step 1-2. 

step 3: 

3-1: Each test point that has not achieved the goal in the 
first step is used as an initial point in a forward search. 

3-2: The forward search is continued until (a) a test point 
has been reached that achieves the goal, (b) a test point 
has been reached which cannot be further improved, 
or (c) a limit on the number of forward iterations has 
been reached. A no-improvement class is assigned 
to the two later types of test points. Test points that 
have achieved the goal are assigned the class goal. 

3-4: If the required instance set is obtained, stop; other- 
wise go to step 1-2. 

The maximum number of iterations in backward search 
and forward search is subjective and can be decided based 
on each case. 

An analysis of this procedure indicates its potential for 
generating a suitable instance set. The required number of 
instances in the instance set can be fulfilled by repeating the 
procedure from step 1 and gridding to as detailed levels as 
necessary. Before any simulation attempt, each proposed 
test point is checked with the current instance set for its 
uniqueness. 

Step 1 can be used as a means to ensure the input space 
coverage of vthe instance set. Class space coverage is 
fulfilled to some extent by Steps 2 and 3. Step 2 serves 
to provide useful information (i.e., test points belonging 
to modification classes) about the area close to the goal 
as quickly as possible. Step 3 may provide test points 
belonging to the no-improvement class. Even though from 
the class space coverage point of view it is desired to obtain 
several test points belonging to the no-improvement class, 
from the learned rules point of view obtaining such test 
points is not critical. However, it is critical to obtain at 
least one test point with the class goal, in step 1 or 3. A flow 
chart of the instance generation procedure is presented in 
Figure 3. 

4 CONCLUSION 

We have introduced the general problem of automatic in- 
stance generation as a means of providing the required 
instance set for an inductive leaming algorithm. The ele- 
ments (input space, output space, class space, simulation 
process, and class criterion) of the instance generation pro- 
cess are briefly analyzed to clarify the scope of problems 
in the instance generation process. An overview of search 
techniques is mentioned. An automatic instance genera- 
tion procedure and its resultant instance set are sensitive 
to the number and the content (definition) of proposed 
classes. These classes are in fact actions to be taken upon 
analysis of simulation output. Also, the resultant instance 
set is sensitive to the nondeterministic nature of the simu- 
lation process. 

An automatic instance generation procedure is proposed 
which is an attempt to include the forgoing discussion in 
relation to our research needs. It is believed that this paper 
may be used as a base for design of automatic instance 
generation procedures for different situations. Generated 
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Figure 3: Flow Chart of Instance Generation Procedure 

instance sets are specifically valuable in cases where there 
are no other types of examples of the conditions of the 
system under study. 
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