
Proceedings of the 1994 Winter Simulation Conference
ed. J . D. Tew, S . Manivannan, D. A. Sadowski, and A . F. Seila

AUTOMATIC INSTANCE GENERATION USING SIMULATION FOR INDUCTIVE LEARNING

Sima Parisay
Behrokh Khoshnevis

Industrial and Systems Engineering Department
University of Southern California

Los Angeles, CA 90089-0193, U. S. A.

ABSTRACT

Inductive learning can be used to extract rules required
for an expert system which assists in output analysis for
system simulation. However, several expamples of the
system, constituting an instance set, are required for leam-
ing to take place. Generating the required instance set to
be used by an inductive learning algorithm is time con-
suming and complex. This paper is an attempt to clarify
this problem, discuss its complexity, and suggest context
related solutions. A procedure for automatic instance gen-
eration is then proposed. The proposed procedure is a
combination of three search methods (grid based, forward
search, backward search).

1 INTRODUCTION

Inductive learning can be used to extract rules required for
an expert system which assists in output analysis for sys-
tem simulation. This idea as applied to queuing systems
simulation was discussed in two previous papers, Khosh-
nevis and Parisay (19931, and Parisay and Khoshnevis
(1993). In learning the behavior of a system, several ex-
amples of the system's operation are required for learning
to take place. In the absence of real examples of a sys-
tem, such examples may be generated using a simulated
model of the system. Generating examples using simu-
lation should be performed systematically. Moreover, it
is desirable to automate the process of generating usable
examples.

In order to apply the inductive learning algorithm, in
this study, a simulation model is considered to have several
control-features. These control-features may be some of
the input parameters, some of the output results, a combi-
nation of the two, or some performance data collected dur-
ing model execution. Examples of such control-features
in a queuing system are: mean inter-arrival time, mean
service time, mean waiting time in a queue, and system
throughput.

To be able to classify some examples of a simulated
model, the required classes are initially defined. For exam-
ple, class goal is defined for successful simulation runs and

class no-goal for unsuccessful runs. An instance is then a
set of specified values for control-features of a simulation
model and their related class. Therefore, any change in
the values of the model parameters creates a new instance.
An instance is represented as a vector of control-features
and their values as well as the class to which it belongs.
The following is an example of an instance which belongs

(inter-m'val time: Exponential(3), service time: Uni-
to class goal:

form(2,4), ..., throughput: 1.5, class: goal}

In order to generate an instance the following procedure
is performed:

1. A value is selected for each input parameter. This set
of input values is called a tesrpoinr.

2. The model is then simulated using the test points.
Consequently a set of values are obtained as the out-
putresult. This set of output values is called an output
point.

3. The output point is analyzed and compared with the
definition of different classes, then the class that best
suits the situation is selected.

In Figure 1, the above procedure is depicted to facili-
tate later discussions. Here, the collection of all feasible
points for input parameters have created the input space.
Similarly, the set of all obtainable output points as an out-
put result is called the output space. The defined classes
constitute the class space. A simulation process, which is
represented as FSO, maps a test point to an output point.
A class selection criterion, called class criterion, which is
represented as FCO, maps the output point to a class.

To perform an inductive learning, an instance set is
required. The instance set should have the following char-
acteristics: a) The number of instances should be sufficient
for effective learning, b) Each instance should be unique
(not repeated). Also, the quality of instance set may be of
concern, meaning:

0 The instances should appropriately represent the in-
put space, called input space coverage.

1409

Authorized licensed use limited to: CAL POLY POMONA. Downloaded on May 29,2024 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

1410 Parisay and Khoshnevis

--.--
...._____._.._ --.w *-

Figure 1: Elements of the Problem

0 The number of instances in each class should be suit-
able for learning, called class space coverage.

0 The instances should be unique but also represent
distinct senarios, called instance distinction.

2 INSTANCE GENERATION

The process for generating an instance set is called the
instance generation procedure. Such procedure should
be designed to satisfy the required characteristics of an
instance set as mentioned in the previous section. Also,
possible time limitations should be considered in the pro-
cedure. Otherwise, it may cause premature termination
of the procedure (i.e., prior to generation of the desired
number of instances.) The uniqueness of instances can
be checked while instances are generated. Distinction of
instances may be enforced using additional constraints on
the degree of closeness of two test points. Input space
coverage can be enforced by partitioning the search space
by equal size grids or by using Factorial designs (Law
and Kelton 1991) when the number of input parameters is
large.

The most difficult quality of an instance set to achieve is
the class space coverage. As depicted in Figure 1, the class
selection depends on class criterion, FC(), and simulation,
FS(), which is a stochastic process. Therefore, there is no
guarantee that the selected test points will result in a spe-
cific class, unless there is a considerable amount of domain
knowledge which is generally unlikely to exist. Moreover,
there is usually no information about the possible number
of instances which belong to any of the identified classes.
Each class is defined with an anticipation for the existence
of a number of test points which map to it. In practice,
however, some classes may never be used in any one of
the generated instances.

The class space coverage problem necessitates the use
of some kind of search method. Selection of a search
method depends on the definition of classes. For example,
if there are only two classes as goal and no-goal then a
partitioning (gridding) of input space can be performed.
Each test point in a grid element (square, cube, etc.) will
either achieve or not acheive the goal, and consequently it
will belong to either the class goal or the class no-goal. If
number of instances in any of these classes is not sufficient,

a finer gridding can be performed in a smaller area which
is promising for obtaining test points from that class.

In this study several classes are considered. The first
class is called goal and is assigned to a test point that
has acheived the goal. The second class is called no-
improvement and is assigned to a test point that cannot
achieve the goal withinconstraints of the procedure. Other
classes are some specified modifications that can be ap-
plied to input parameters in order to obtain improved test
points (toward the goal), For example, the modification
class Ma is defined as: increase inter-arrival mean by ten
percent.

The output space has unknown characteristics. It is not
easy to estimate whether the output’s mesh surface is uni-
modal or multimodal. Search techniques in Operations
Research field (Bazaraa and Shetty 1992) are usually suc-
cessful in cases that meet specific conditions (i.e., continu-
ity, uni-model, and so on). Such conditions cannot easily
be proven to exist in our case. The Genetic Algorithm
(GA) can be used to find the goal but it cannot indicate the
effect of modification classes on each test point which is
of importance in this study. However, GA can be used for
pre-optimization to find the promising regions and then
to apply another search method for fine tuning (Syrjakow
and Szczerbicka 1993). Artificial Intelligence (AI) search
techniques which are of hill climbing nature suit this study
the most. Two heuristic search methods which are used in
this study are briefly explained in the following sections.

2.1 Backward Search

In backward search, as illustrated in Figure 2, the attempt
is in finding those test points (i-1) that can lead to a given
point (i), when a modification class is applied to them.
Therefore, for each modification class an inverse modifi-
cation, called inverse modification, should be defined such
that when applied to a given test point i, it provides a new
test point i-I . A new instance is then generated by con-
sidering the provided test point, i-1, and the modification
class. The purpose of backward search is to find test points
such that the goal test point can be reached by applying
one of the modification classes.

22 Forward Search

An AI hill climbing search technique, for example nearest
neighbor, can be applied to a no-goaZ test point. The
purpose of the forward search is to find a path of test
points, and a related modification class for each test point,
so that the output of any new test point in the path has a
better chance of getting closer to the goal.

Authorized licensed use limited to: CAL POLY POMONA. Downloaded on May 29,2024 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

Simulation for Inductive Learning 1411

3-3: The test points in a forward path are used as instances
with their related modification class; the leaf will have
goal or no-improvement class. Step 2 is applied to modification class

+ pointi pointi-1 *
I the newly found goal test points. 4

inverse modification

Figure 2: Inverse Modificaiton

3 AN AUTOMATIC INSTANCE GENERATION
PROCEDURE

Previous sections attempted to clearify the instance gen-
eration problem and instance set requirements. This sec-
tion proposes a practical automatic instance generation
procedure which can potentially fulfill the requirements.
The required information for each instance is a test point,
an output point, and its related class in the class space.
Classes are goal, no-improvement, and several modifica-
tion classes. Automatic instance generation has the fol-
lowing steps:

Step 1:

1-1: Grid the input space as desired.

1-2: Select a test point from each grid and simulate it.
If output point has achieved the goal go to step 2;
otherwise go to step 3.

Step 2:

2-1: Each test point that its output has achieved the goal
is assigned the class goal and it is used as an initial
point in a backward search.

2-2: The backward search is continued for each recently
found test point to arrive at new test points. The
modification class which is used to arrive at the new
test point is assigned as the test point’s class.

2-3: If the required instance set is obtained stop, otherwise
go to step 1-2.

step 3:

3-1: Each test point that has not achieved the goal in the
first step is used as an initial point in a forward search.

3-2: The forward search is continued until (a) a test point
has been reached that achieves the goal, (b) a test point
has been reached which cannot be further improved,
or (c) a limit on the number of forward iterations has
been reached. A no-improvement class is assigned
to the two later types of test points. Test points that
have achieved the goal are assigned the class goal.

3-4: If the required instance set is obtained, stop; other-
wise go to step 1-2.

The maximum number of iterations in backward search
and forward search is subjective and can be decided based
on each case.

An analysis of this procedure indicates its potential for
generating a suitable instance set. The required number of
instances in the instance set can be fulfilled by repeating the
procedure from step 1 and gridding to as detailed levels as
necessary. Before any simulation attempt, each proposed
test point is checked with the current instance set for its
uniqueness.

Step 1 can be used as a means to ensure the input space
coverage of vthe instance set. Class space coverage is
fulfilled to some extent by Steps 2 and 3. Step 2 serves
to provide useful information (i.e., test points belonging
to modification classes) about the area close to the goal
as quickly as possible. Step 3 may provide test points
belonging to the no-improvement class. Even though from
the class space coverage point of view it is desired to obtain
several test points belonging to the no-improvement class,
from the learned rules point of view obtaining such test
points is not critical. However, it is critical to obtain at
least one test point with the class goal, in step 1 or 3. A flow
chart of the instance generation procedure is presented in
Figure 3.

4 CONCLUSION

We have introduced the general problem of automatic in-
stance generation as a means of providing the required
instance set for an inductive leaming algorithm. The ele-
ments (input space, output space, class space, simulation
process, and class criterion) of the instance generation pro-
cess are briefly analyzed to clarify the scope of problems
in the instance generation process. An overview of search
techniques is mentioned. An automatic instance genera-
tion procedure and its resultant instance set are sensitive
to the number and the content (definition) of proposed
classes. These classes are in fact actions to be taken upon
analysis of simulation output. Also, the resultant instance
set is sensitive to the nondeterministic nature of the simu-
lation process.

An automatic instance generation procedure is proposed
which is an attempt to include the forgoing discussion in
relation to our research needs. It is believed that this paper
may be used as a base for design of automatic instance
generation procedures for different situations. Generated

Authorized licensed use limited to: CAL POLY POMONA. Downloaded on May 29,2024 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

1412 Parisay and Khoshnevis

simulate one test pint pcr grid1
t

Figure 3: Flow Chart of Instance Generation Procedure

instance sets are specifically valuable in cases where there
are no other types of examples of the conditions of the
system under study.

Bazaraa, M. S., and C. M. Shetty. 1979. Nonlinear Pro-
gramming Theory and Algorithms. John Wiley & Sons.

Khoshnevis, B. 1994. Discrete System Simulation. Mc-
Graw Hill, Inc.

Khoshnevis, B., and S. Parisay. 1993. Machine Learn-
ing and Simulation - Application in Queuing Systems.
Simulation 6 1~294-302.

Law, A. M., and W. D. Kelton. 199 1. Simulation Modeling
& Analysis. McGraw-Hill, Inc.

Parisay, S., and B. Khoshnevis. 1993. Application of
simulation and inductive learning in design of queuing
systems. In Proceedings of the 1993 International Sim-
ulation Technology Conference SIMTEC 93, ed. Martin
Dost Consultant, 250-255. The Society for Computer
Simulation, San Francisco, California.

Syrjakow, M., and H. Szczerbicka. 1993. REM0 - A tool
for the automatic optimization of performance models.
In Proceedings of the European Simulation Symposium
ESS’93, eds. A. Verbraeck, and E. Kerckhoffs, 597-603.
Delft, Netherland.

AUTHOR BIOGRAPHIES

SIMA PARISAY is a lecturer in Industrial and Manufac-
turing Engineering Department at California State Poly-
technic University, Pomona. She received a B .S. degree in
Industrial Engineering from Sharif University of Technol-
ogy in Iran in 1973. She graduated from Aston University
in England with a M.S. degree in Production Engineering
in 1975. She is currently completing her Ph.D. degree
in Industrial and Systems Engineering from University of
Southem California. She has several years of experience
in lecturing and consulting. Her research interest is in
intelligent simulation experimental design and analysis.

Dr. BEHROKH KHOSHNEVIS is the Director of
Manufacturing Engineering Program and is an Associate
Professor of industrial and systems engineering at the
University of Southern California. He has taught
computer simulation for more than ten years to university
students and industrial practitioners. He has designed the
EZSIM general-purpose simulation software, and has
consulted with major software firms in the simulation
software design process. Dr. Khoshnevis’ primary
research interests are in intelligent simulation
environments and in automated process planning and
concurrent engineering. Dr. Khoshnevis is a member of
the Board of Directors of the Society for Computer
Simulation. He is a senior member of the Society of
Manufacturing Engineers and the Institute of Industrial
Engineers. His book on “Discrete Systems Simulation”
has been recently published by McGraw Hill, Inc.

Authorized licensed use limited to: CAL POLY POMONA. Downloaded on May 29,2024 at 21:11:36 UTC from IEEE Xplore. Restrictions apply.

