
Determining the fitting parameters in Curvefit

In this curvefitting program we offer two ways to fit 3 different types
of functions to data. The three types of functions are: linear y = a + bx,
exponential y = aebx and a power law function y = axb. The two ways to fit
the data are via linear regression and minimizing a chi-square function.

For the linear regression option, we use the standard formulas for ”Least-
Squares Fitting” found in Chapter 8 of ”An introduction to Error Analysis”
(Second Edition) by John Taylor. For the exponential and power fits, the
equations are linearized. The uncertainty in the fitting parameters a and b
are determined from Eqs. 8.15, 8.16, and 8.17.

For the chi-square search method, we find values of a and b that minimize
a chi-square function χ2 which is defined to be the difference between the data
and the modeling equations divided by the error in the data. For example,
for the exponential fit,

χ2(a, b) =
N
∑

i

(

aebxi
− yi

σi

)2

(1)

where σi is the error in yi. For convenience we call 1/σ2

i ≡ wi. The χ2

function becomes

χ2(a, b) =
N
∑

i

wi

(

aebxi
− yi

)2

(2)

For the power function, we have

χ2(a, b) =
N
∑

i

wi

(

axb
i − yi

)2

(3)

We want to find values of a and b for which the function χ2 is a miminum.
The function χ2 will be an extremum (i.e. a minimum) when the partial

derivative with respect to each of the two parameters equals zero:

D1 ≡

∂χ2

∂b
= 0

D2 ≡

∂χ2

∂a
= 0

1



A closed form expression for the solution to these equations is not possible.
We will find a solution using an iterative process. We start from one point
(b0, a0) and move to the next point (b1, a1) that will reduce the value of χ2.
We repeat the iteration until D1 = D2 = 0 to the desired accuracy. We use
Newton’s method in two dimensions to step through the parameter space.
The steps will be small if χ2 is near the minimum, and are defined as ǫi:

b1 = b0 + ǫ1

a1 = a0 + ǫ2

We expand χ2, via a Taylor expansion, up to order 2:

χ2(a1, b1) ≈ χ2(a0, b0) +
2

∑

i=1

Diǫi +
1

2

2
∑

i=1

ǫ2iHii + ǫ1ǫ2H12 (4)

where Hij is the Hessian matrix:

H11 =
∂2χ2

∂b2
H22 =

∂2χ2

∂a2
H12 = H21 =

∂2χ2

∂b∂a

With this approximate expression, i.e. the Taylor expansion of χ2 to second
order, we can find the minimum of this paraboloid by solving for where the
first derivatives equal zero:

∂χ2

∂ǫ1
= D1 +H11ǫ1 +H12ǫ2 = 0

∂χ2

∂ǫ2
= D2 +H12ǫ1 +H22ǫ2 = 0

These two equations can be solved for the ǫi using substitution with the
result:

ǫ1 =
D2H12 −D1H22

H11H22 −H2

12

ǫ2 =
D1H12 −D2H11

H11H22 −H2

12
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The two ǫi are added to their respective parameters to give the new values:
(b1, a1) = (b0+ǫ1, a0+ǫ2). The two old values are replaced by the new values
for the parameters, and the process is repeated for the next step in the
two parameter space. We start with the two values (b0, a0) from the linear
regression formulas. Since these initial values are close to the true minimum,
the function χ2 is nearly a paraboloid, and convergence is obtained in only
a few iterations.

The partial derivatives and the Hessian matrix are determined from the
sums by differentiating the χ2 formula. The results for the exponential fit
are:
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N
∑

i=1
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The derivatives and Hessian matrix results for the power fit are:

3



D1 =
N
∑

i
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∑
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b
i ln(xi))

For the errors in the fitting parameters a and b for the linear regression
fits, we use the formulas in Taylor’s book. Also for the Chi-square fit for the
linear form we use the formula in his book. However, for the Chi-square fit
for the exponential and power forms we use as errors the square root of the
diagonal elements of the inverse Hessian matrix (H−1), which is also refered
to as the error matrix:

∆b =

√

H22

H11H22 −H2

12

∆a =

√

H11

H11H22 −H2

12

We note that these errors are different than the ones determined using gnu-
plot. In gnuplot, these errors are multiplied by

√

2χ2/(degrees of freedom)
so that the chi-square per degree of freedom is normalized to one. We print
out the chi-square per degree of freedom, χ2/df so you can check if this num-
ber is between one and two. If it is too small, then your ∆y errors are too
large. If χ2/df is too large, then your ∆y errors are either too small, or the
fitting function is incorrect.

As a final note, if the fitting function is not a good representation of the
data, the Newton’s method we use might not converge. To avoid this possible
problem, we use a grid search if the χ2 starts to increase.
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