Prelab

1. Design a 4-bit adder/subtractor using only full adders and EXCLUSIVE- OR gates. Do not use any multiplexers.
2. Design a combinational circuit using a minimum number of Full adders, and logic gates which will perform A plus B or minus B (A and B are signed numbers), depending on a mode select input, M. If $M=0$, addition is carried out; if $M=1$, subtraction is carried out. Assume $A=A_{4} A_{3} A_{2} A_{1} A_{0}$ and $B=B_{4} B_{3} B_{2} B_{1} B_{0}$ (Two 5- bit number). The circuit should be able to carry out the subtraction even if $A<B$. use an LED to indicate the sign of the result (LED ON for negative result and LED OFF for a positive result). The result of the operation should always appear in BCD form on seven-segment displays. The overflow bit (V) should be indicated by another LED (LED ON for V=1 and LED OFF for $\mathrm{V}=0$). Do not use any exclusive-OR gates with the full adders; Use multiplexers. However, you may use one exclusiveOR gate for the above.

LAB

Parts List: DIP Switches, Three 74LS283 (Full Adder), Three 74LS86, One 74LS47, One seven-segment display, Two LEDs, 1K \& 330 Ohms.
Implement the above circuit using a minimum number of SSI and MSI chips. Demonstrate the operation using switches and LED, sevensegment display (select from Data book)_etc. as needed.

Postlab

Design a combinational circuit that will perform the following operstion:

S_{1}	S_{0}	Y
0	0	0
0	1	A
1	0	B
1	1	15_{10}

