Ziegler-Nichols PID tuning method

Use the Ziegler–Nichols tuning method to obtain the control gains for the system below:

$$\frac{1}{s^3 + 6s^2 + 11s + 6}$$

-Start with the Kp only (Ki and Kd are zero)

-Start with a small value for Kp (for example Kp=1).

-Increase Kp until the system is on the verge of stability (oscillates with a constant amplitude without settling down)

🍋 unt	itled * - Simulink academic use						承 s	cope1								- 1] >	$\langle \times \rangle$
SIN	IULATION DEBUG	MODELING	FORM	AT APP	s	SCOPE	File	Tools	View	Simulatio	on Help							<u>ъ</u>
Mor Advis	el Find - del Compare or - 111 Environment - EVALUATE & MANAGE	Model Data N Editor Ex	fodel plorer DESIGN	Schedule Editor	Model Settings SETUP	Create Subsystem	() • 1.8	🍓 💽) 🏞 •	• •	•	∮ ∂ ·			٨		
ser	Library Browser	۲	× 🦛	📫 🏠 untitlea			1.6	/		\	1 /				T I	$ \land $	$ \land $	Pro
Brow	Enter search term 🗸 🗸	• 🗄	8	🍋 untitled			1.4		\uparrow	t t						=1		perty
Model	Library Search Results	Â									8	10 12 14			16 18 20		Inspector	
	 Discrete Logic and Bit Operations 						Ready								s	ample bas	ed 1=20.	000
	 Lookup Tables Math Operations Matrix Operations Messages & Events 															→ □ Scope 1		
	 Model Verification Model-Wide Utilities 		63						2	2								
	Ports & Subsystems	*	»															100
Ready						11	2%										a	uto(ode45)
-	$\mathcal P$ Type here to sea	rch	۲	🚍 🚭 🖷	- 📐	🗟 🖉 🔸	×	<u>i</u>) S <u>N</u>	. 😭	~		2	55°F	^ _ {	<u>事</u> (小)) 1	8:08 PM 1/19/202	4 🗟

This proportional control gain is called the ultimate gain Ku:

Ku=60

Find the period of the oscillation corresponding to Ku.

Tu=2 seconds

Control Type	K_p	T_i	T_d	K_i	K_d	
Р	$0.5K_u$	-	—	_	_	
PI	$0.45K_u$	$0.8\overline{3}T_u$	_	$0.54K_u/T_u$	_	
PD	$0.8K_u$	-	$0.125T_u$	_	$0.10K_uT_u$	
classic PID ^[2]	$0.6K_u$	$0.5T_u$	$0.125T_u$	$1.2K_u/T_u$	$0.075K_uT_u$	
Pessen Integral Rule ^[2]	$0.7K_u$	$0.4T_u$	$0.15T_u$	$1.75K_u/T_u$	$0.105 K_u T_u$	
some overshoot ^[2]	$0.3\overline{3}K_u$	$0.50T_u$	$0.3\overline{3}T_u$	$0.6\overline{6}K_u/T_u$	$0.1\overline{1}K_uT_u$	
no overshoot ^[2]	$0.20K_u$	$0.50T_u$	$0.3\overline{3}T_u$	$0.40 K_u/T_u$	$0.06\overline{6}K_uT_u$	

Ziegler–Nichols method^[1]

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

Control type: P

0.5 Ku=30

Update the Kp gain and run the simulation:

Steady-state error exists.

Now use the Integral controller:

Ziegler–Nichols method^[1]

Control Type	K_p	T_i	T_d	K_i	K_d		
Р	$0.5K_u$	_	_	_	_		
PI	$0.45K_u$	$0.8\overline{3}T_u$	_	$0.54K_u/T_u$	_		

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

Control type: PI

Kp = 0.45 Ku = 27

Ki = 0.54Ku/Tu = 16.2

Update the Kp and Ki and run the simulation:

The overshoot can be reduces using the derivative controller.

PID controller:

Note: The derivative controller can not be used on it's own. It requires a filter to remove the high frequency noise (also a derivative term is predicting the future which is not realistic in a practical situation). Therefore a filter has to be added to the derivative controller. The derivative controller with the filter looks like: N.S/(S+N)

In this example we are using a filter with N=100 (to remove the frequency higher than 100 rad/s). Therefore and the derivative controller with the filter looks like: 100S/(S+100).

Control Type	K_p	T_i	T_d	K_i	K_d	
Р	$0.5K_u$	_	_	_	_	
PI	$0.45K_u$	$0.8\overline{3}T_u$	_	$0.54K_u/T_u$	_	
PD	$0.8K_u$	_	$0.125T_u$	_	$0.10K_uT_u$	
classic PID ^[2]	$0.6K_u$	$0.5T_u$	$0.125T_u$	$1.2K_u/T_u$	$0.075K_uT_u$	

Ziegler–Nichols method^[1]

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

Control type: PID

Kp = 0.6 Ku = 36

Ki = 1.2Ku/Tu = 36

Kd = 0.075 Ku Tu = 9

These initial values of the controller gains for Kp, Ki, and Kd are the starting values for the tuning. Further tuning can be performed by trial and error (after this initial tuning) to improve the response and fine tuning the response, if needed.