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The discrete Hardy inequality

Theorem (Hardy 1925)

Given p > 1, the discrete Hardy inequality claims

∞∑
n=1

(
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≤
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)p ∞∑
n=1

apn ,

for all non-negative sequence {an}n≥1.

The constant
(

p
p−1

)p
is optimal.

If p = 1 (or less), the inequality fails.
Consider the sequence a1 = 1 and an = 0, for n ≥ 2.

The Hardy inequality was introduced in two versions:
discrete (using series) and continuous (using integrals).
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The weighted discrete Hardy inequality

In this project, we consider the following weighted discrete version:
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∞∑
n=1
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where {un}n≥1 is a weight sequence and 1 < p <∞.

Theorem (Characterization by Andersen-Heinig 1983)

Inequality (1) is valid if and only if
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<∞,

where q is the conjugate exponent of p, i.e. 1
p + 1

q = 1. In addition,

A ≤ C ≤ 4A.
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An application: Solvability of div u = f on Ω ⊂ R2

Let us consider the following irregular domain in R2

Ω := {(x1, x2) ∈ R2 : 0 < x1 < 1, and 0 < x2 < xγ1 }

where γ > 1.

x2 = xγ1

x1

x2

1

1

Ω



An application: Solvability of div u = f on Ω ⊂ R2

Divergence equation:

Given a function f : Ω→ R, with
∫

Ω f = 0,

is there a vector field u : Ω→ R2 such that

∂u1

∂x1
(x) +

∂u2

∂x2
(x) = f (x) x in Ω

u(x) = 0 x on ∂Ω

with the following estimate on the partial derivatives of u∫
Ω

∣∣∣∣∂uj(x)

∂xi

∣∣∣∣2 ≤ C 2

∫
Ω
|f (x)|2 dx? (_)
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An application: Solvability of div u = f on Ω ⊂ R2

Our motivation:

Is it possible to replace (_) by a weighted version?

∫
Ω

∣∣∣∣∂uj(x)

∂xi

∣∣∣∣2 x2(γ−1)
1 ω(x1)−2 dx ≤ C 2

∫
Ω
|f (x)|2ω(x1)−2 dx (`)

For what weights ω(x1)?
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An application: Solvability of div u = f on Ω ⊂ R2

Theorem (Hardy ⇒ div u = f )

There exists a solution of the divergence equation with∫
Ω

∣∣∣∣∂uj(x)

∂xi

∣∣∣∣2 x2(γ−1)
1 ω(x1)−2 dx ≤ C 2

∫
Ω
|f (x)|2ω(x1)−2 dx (`)

if
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n=1

un

(
n∑

k=1

ak

)2

≤ C 2
∞∑
n=1

una
2
n,

where
un = 2−(γ+1)nω2(2−n).

In addition, we estimate the constant C in (`) in terms of A.
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An example

We consider the power weights ω(x1) = xβ1 , where β > −γ−1
2 .
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k∈N
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2
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where
un = 2−(γ+1+2β)n.

Thus, we define
r := 2−(γ+1+2β) < 1.
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An example: ω(x1) = xβ1 , where β > −γ−1
2 .
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An application: Solvability of div u = f on Ω ⊂ R2

Corollary

Let β > −γ−1
2 . Then, there exists a solution u of div u = f which

satisfies that u(x) = 0 on ∂Ω, and∫
Ω

∣∣∣∣∂uj(x)

∂xi

∣∣∣∣2 x2(γ−1)
1 x−2β

1 dx ≤ C 2

∫
Ω
|f (x)|2x−2β

1 dx , (`)

where

C 2 ≤ M
216β(

1− 2−2(β+ γ+1
2 )
)2

for M independent of β.
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