An application of the weighted discrete Hardy inequality

Selena Bui Van Tran
Department of Mathematics and Statistics
Cal Poly Pomona

Supported by NSF-DMS 1247679 grant PUMP

The discrete Hardy inequality

The discrete Hardy inequality

Theorem (Hardy 1925)
Given $p>1$, the discrete Hardy inequality claims

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} a_{n}^{p}
$$

for all non-negative sequence $\left\{a_{n}\right\}_{n \geq 1}$.

The discrete Hardy inequality

Theorem (Hardy 1925)
Given $p>1$, the discrete Hardy inequality claims

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} a_{n}^{p}
$$

for all non-negative sequence $\left\{a_{n}\right\}_{n \geq 1}$.

- The constant $\left(\frac{p}{p-1}\right)^{p}$ is optimal.

The discrete Hardy inequality

Theorem (Hardy 1925)
Given $p>1$, the discrete Hardy inequality claims

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} a_{n}^{p}
$$

for all non-negative sequence $\left\{a_{n}\right\}_{n \geq 1}$.

- The constant $\left(\frac{p}{p-1}\right)^{p}$ is optimal.
- If $p=1$ (or less), the inequality fails.

Consider the sequence $a_{1}=1$ and $a_{n}=0$, for $n \geq 2$.

The discrete Hardy inequality

Theorem (Hardy 1925)
Given $p>1$, the discrete Hardy inequality claims

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} a_{n}^{p}
$$

for all non-negative sequence $\left\{a_{n}\right\}_{n \geq 1}$.

- The constant $\left(\frac{p}{p-1}\right)^{p}$ is optimal.
- If $p=1$ (or less), the inequality fails.

Consider the sequence $a_{1}=1$ and $a_{n}=0$, for $n \geq 2$.

- The Hardy inequality was introduced in two versions:

The discrete Hardy inequality

Theorem (Hardy 1925)

Given $p>1$, the discrete Hardy inequality claims

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{p} \leq\left(\frac{p}{p-1}\right)^{p} \sum_{n=1}^{\infty} a_{n}^{p}
$$

for all non-negative sequence $\left\{a_{n}\right\}_{n \geq 1}$.

- The constant $\left(\frac{p}{p-1}\right)^{p}$ is optimal.
- If $p=1$ (or less), the inequality fails.

Consider the sequence $a_{1}=1$ and $a_{n}=0$, for $n \geq 2$.

- The Hardy inequality was introduced in two versions: discrete (using series) and continuous (using integrals).

The weighted discrete Hardy inequality

In this project, we consider the following weighted discrete version:

$$
\begin{equation*}
\sum_{n=1}^{\infty} u_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leq C^{p} \sum_{n=1}^{\infty} u_{n} a_{n}^{p} \tag{1}
\end{equation*}
$$

The weighted discrete Hardy inequality

In this project, we consider the following weighted discrete version:

$$
\begin{equation*}
\sum_{n=1}^{\infty} u_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leq C^{p} \sum_{n=1}^{\infty} u_{n} a_{n}^{p} \tag{1}
\end{equation*}
$$

where $\left\{u_{n}\right\}_{n \geq 1}$ is a weight sequence and $1<p<\infty$.

The weighted discrete Hardy inequality

In this project, we consider the following weighted discrete version:

$$
\begin{equation*}
\sum_{n=1}^{\infty} u_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leq C^{p} \sum_{n=1}^{\infty} u_{n} a_{n}^{p} \tag{1}
\end{equation*}
$$

where $\left\{u_{n}\right\}_{n \geq 1}$ is a weight sequence and $1<p<\infty$.
Theorem (Characterization by Andersen-Heinig 1983)

The weighted discrete Hardy inequality

In this project, we consider the following weighted discrete version:

$$
\begin{equation*}
\sum_{n=1}^{\infty} u_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leq C^{p} \sum_{n=1}^{\infty} u_{n} a_{n}^{p} \tag{1}
\end{equation*}
$$

where $\left\{u_{n}\right\}_{n \geq 1}$ is a weight sequence and $1<p<\infty$.
Theorem (Characterization by Andersen-Heinig 1983)
Inequality (1) is valid if and only if

The weighted discrete Hardy inequality

In this project, we consider the following weighted discrete version:

$$
\begin{equation*}
\sum_{n=1}^{\infty} u_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leq C^{p} \sum_{n=1}^{\infty} u_{n} a_{n}^{p} \tag{1}
\end{equation*}
$$

where $\left\{u_{n}\right\}_{n \geq 1}$ is a weight sequence and $1<p<\infty$.
Theorem (Characterization by Andersen-Heinig 1983)
Inequality (1) is valid if and only if

$$
\mathbb{A}:=\sup _{k \in \mathbb{N}}\left(\sum_{n=k}^{\infty} u_{n}\right)^{\frac{1}{p}}\left(\sum_{n=1}^{k} u_{n}^{1-q}\right)^{\frac{1}{p}}<\infty
$$

where q is the conjugate exponent of p, i.e. $\frac{1}{p}+\frac{1}{q}=1$.

The weighted discrete Hardy inequality

In this project, we consider the following weighted discrete version:

$$
\begin{equation*}
\sum_{n=1}^{\infty} u_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{p} \leq C^{p} \sum_{n=1}^{\infty} u_{n} a_{n}^{p} \tag{1}
\end{equation*}
$$

where $\left\{u_{n}\right\}_{n \geq 1}$ is a weight sequence and $1<p<\infty$.
Theorem (Characterization by Andersen-Heinig 1983)
Inequality (1) is valid if and only if

$$
\mathbb{A}:=\sup _{k \in \mathbb{N}}\left(\sum_{n=k}^{\infty} u_{n}\right)^{\frac{1}{p}}\left(\sum_{n=1}^{k} u_{n}^{1-q}\right)^{\frac{1}{p}}<\infty
$$

where q is the conjugate exponent of p, i.e. $\frac{1}{p}+\frac{1}{q}=1$. In addition,

$$
\mathbb{A} \leq C \leq 4 \mathbb{A}
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Let us consider the following irregular domain in \mathbb{R}^{2}

$$
\Omega:=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: 0<x_{1}<1, \text { and } 0<x_{2}<x_{1}^{\gamma}\right\}
$$

where $\gamma>1$.

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$
Divergence equation:

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Divergence equation:
Given a function $f: \Omega \rightarrow \mathbb{R}$, with $\int_{\Omega} f=0$,

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Divergence equation:
Given a function $f: \Omega \rightarrow \mathbb{R}$, with $\int_{\Omega} f=0$, is there a vector field $\mathbf{u}: \Omega \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{array}{rlrl}
\frac{\partial u_{1}}{\partial x_{1}}(x)+\frac{\partial u_{2}}{\partial x_{2}}(x) & =f(x) & x \text { in } \Omega \\
\mathbf{u}(x) & =0 & & x \text { on } \partial \Omega
\end{array}
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Divergence equation:
Given a function $f: \Omega \rightarrow \mathbb{R}$, with $\int_{\Omega} f=0$, is there a vector field $\mathbf{u}: \Omega \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial x_{1}}(x)+\frac{\partial u_{2}}{\partial x_{2}}(x) & =f(x) & & x \text { in } \Omega \\
\mathbf{u}(x) & =0 & & x \text { on } \partial \Omega
\end{aligned}
$$

with the following estimate on the partial derivatives of \mathbf{u}

$$
\begin{equation*}
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \mathrm{~d} x ? \tag{t}
\end{equation*}
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Divergence equation:
Given a function $f: \Omega \rightarrow \mathbb{R}$, with $\int_{\Omega} f=0$, is there a vector field $\mathbf{u}: \Omega \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial x_{1}}(x)+\frac{\partial u_{2}}{\partial x_{2}}(x) & =f(x) & & x \text { in } \Omega \\
\mathbf{u}(x) & =0 & & x \text { on } \partial \Omega
\end{aligned}
$$

with the following estimate on the partial derivatives of \mathbf{u}

$$
\begin{equation*}
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \mathrm{~d} x ? \tag{t}
\end{equation*}
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Divergence equation:
Given a function $f: \Omega \rightarrow \mathbb{R}$, with $\int_{\Omega} f=0$, is there a vector field $\mathbf{u}: \Omega \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial x_{1}}(x)+\frac{\partial u_{2}}{\partial x_{2}}(x) & =f(x) & & x \text { in } \Omega \\
\mathbf{u}(x) & =0 & & x \text { on } \partial \Omega
\end{aligned}
$$

with the following estimate on the partial derivatives of \mathbf{u}

$$
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} \mathrm{d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \mathrm{~d} x ?
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Divergence equation:
Given a function $f: \Omega \rightarrow \mathbb{R}$, with $\int_{\Omega} f=0$, is there a vector field $\mathbf{u}: \Omega \rightarrow \mathbb{R}^{2}$ such that

$$
\begin{aligned}
\frac{\partial u_{1}}{\partial x_{1}}(x)+\frac{\partial u_{2}}{\partial x_{2}}(x) & =f(x) & & x \text { in } \Omega \\
\mathbf{u}(x) & =0 & & x \text { on } \partial \Omega
\end{aligned}
$$

with the following estimate on the partial derivatives of \mathbf{u}

$$
\begin{equation*}
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} \mathrm{d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \mathrm{~d} x ? \tag{t}
\end{equation*}
$$

YES

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$
Our motivation:

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Our motivation:
Is it possible to replace (\&) by a weighted version?

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$
Our motivation:
Is it possible to replace (\&) by a weighted version?

$$
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$
Our motivation:
Is it possible to replace (\&) by a weighted version?

$$
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x
$$

For what weights $\omega\left(x_{1}\right)$?

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$
Theorem (Hardy $\Rightarrow \operatorname{div} \mathbf{u}=f$)

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$
Theorem (Hardy $\Rightarrow \operatorname{div} \mathbf{u}=f$)
There exists a solution of the divergence equation with

$$
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Theorem (Hardy $\Rightarrow \operatorname{div} \mathbf{u}=f$)
There exists a solution of the divergence equation with

$$
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x
$$

if

$$
\sum_{n=1}^{\infty} u_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{2} \leq C^{2} \sum_{n=1}^{\infty} u_{n} a_{n}^{2}
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Theorem (Hardy $\Rightarrow \operatorname{div} \mathbf{u}=f$)
There exists a solution of the divergence equation with

$$
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x
$$

if

$$
\sum_{n=1}^{\infty} u_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{2} \leq C^{2} \sum_{n=1}^{\infty} u_{n} a_{n}^{2}
$$

where

$$
u_{n}=2^{-(\gamma+1) n} \omega^{2}\left(2^{-n}\right)
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Theorem (Hardy $\Rightarrow \operatorname{div} \mathbf{u}=f$)
There exists a solution of the divergence equation with

$$
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x
$$

if

$$
\mathbb{A}:=\sup _{k \in \mathbb{N}}\left(\sum_{n=k}^{\infty} u_{n}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{k} u_{n}^{-1}\right)^{\frac{1}{2}}<\infty
$$

where

$$
u_{n}=2^{-(\gamma+1) n} \omega^{2}\left(2^{-n}\right)
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Theorem (Hardy $\Rightarrow \operatorname{div} \mathbf{u}=f$)
There exists a solution of the divergence equation with

$$
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} \omega\left(x_{1}\right)^{-2} \mathrm{~d} x
$$

if

$$
\mathbb{A}:=\sup _{k \in \mathbb{N}}\left(\sum_{n=k}^{\infty} u_{n}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{k} u_{n}^{-1}\right)^{\frac{1}{2}}<\infty
$$

where

$$
u_{n}=2^{-(\gamma+1) n} \omega^{2}\left(2^{-n}\right)
$$

In addition, we estimate the constant C in (\%) in terms of \mathbb{A}.

An example

An example

We consider the power weights $\omega\left(x_{1}\right)=x_{1}^{\beta}$, where $\beta>\frac{-\gamma-1}{2}$.

An example

We consider the power weights $\omega\left(x_{1}\right)=x_{1}^{\beta}$, where $\beta>\frac{-\gamma-1}{2}$.

$$
\mathbb{A}:=\sup _{k \in \mathbb{N}}\left(\sum_{n=k}^{\infty} u_{n}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{k} u_{n}^{-1}\right)^{\frac{1}{2}}<\infty
$$

where

$$
u_{n}=2^{-(\gamma+1+2 \beta) n}
$$

An example

We consider the power weights $\omega\left(x_{1}\right)=x_{1}^{\beta}$, where $\beta>\frac{-\gamma-1}{2}$.

$$
\mathbb{A}:=\sup _{k \in \mathbb{N}}\left(\sum_{n=k}^{\infty} u_{n}\right)^{\frac{1}{2}}\left(\sum_{n=1}^{k} u_{n}^{-1}\right)^{\frac{1}{2}}<\infty
$$

where

$$
u_{n}=2^{-(\gamma+1+2 \beta) n} .
$$

Thus, we define

$$
r:=2^{-(\gamma+1+2 \beta)}<1 .
$$

An example: $\omega\left(x_{1}\right)=x_{1}^{\beta}$, where $\beta>\frac{-\gamma-1}{2}$.

$$
\begin{aligned}
\mathbb{A} & =\sup _{k \geq 1}\left(\sum_{n=k}^{\infty} r^{n}\right)^{1 / 2}\left(\sum_{n=1}^{k} r^{-n}\right)^{1 / 2} \\
& =\sup _{k \geq 1}\left(\frac{r^{k}}{1-r}\right)^{1 / 2}\left(\frac{\left(r^{-1}\right)^{k+1}-r^{-1}}{r^{-1}-1}\right)^{1 / 2} \\
& <\sup _{k \geq 1}\left(\frac{r^{-1}}{(1-r)\left(r^{-1}-1\right)}\right)^{1 / 2} r^{k / 2} r^{-k / 2} \\
& =\frac{1}{(1-r)}=\frac{1}{1-2^{-2\left(\beta+\frac{\gamma+1}{2}\right)}}<\infty
\end{aligned}
$$

An example: $\omega\left(x_{1}\right)=x_{1}^{\beta}$, where $\beta>\frac{-\gamma-1}{2}$.

$$
\begin{aligned}
\mathbb{A} & =\sup _{k \geq 1}\left(\sum_{n=k}^{\infty} r^{n}\right)^{1 / 2}\left(\sum_{n=1}^{k} r^{-n}\right)^{1 / 2} \\
& =\sup _{k \geq 1}\left(\frac{r^{k}}{1-r}\right)^{1 / 2}\left(\frac{\left(r^{-1}\right)^{k+1}-r^{-1}}{r^{-1}-1}\right)^{1 / 2} \\
& <\sup _{k \geq 1}\left(\frac{r^{-1}}{(1-r)\left(r^{-1}-1\right)}\right)^{1 / 2} r^{k / 2} r^{-k / 2} \\
& =\frac{1}{(1-r)}=\frac{1}{1-2^{-2\left(\beta+\frac{\gamma+1}{2}\right)}}<\infty
\end{aligned}
$$

which implies, by the characterization, that for any $\left\{a_{n}\right\}_{n \geq 1}$

$$
\sum_{n=1}^{\infty} u_{n}\left(\sum_{k=1}^{n} a_{k}\right)^{2} \leq C^{2} \sum_{n=1}^{\infty} u_{n} a_{n}^{2}
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Corollary

Let $\beta>\frac{-\gamma-1}{2}$. Then, there exists a solution \mathbf{u} of $\operatorname{div} \mathbf{u}=f$ which satisfies that $\mathbf{u}(x)=0$ on $\partial \Omega$, and

$$
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} x_{1}^{-2 \beta} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} x_{1}^{-2 \beta} \mathrm{~d} x,
$$

An application: Solvability of $\operatorname{div} \mathbf{u}=f$ on $\Omega \subset \mathbb{R}^{2}$

Corollary

Let $\beta>\frac{-\gamma-1}{2}$. Then, there exists a solution \mathbf{u} of $\operatorname{div} \mathbf{u}=f$ which satisfies that $\mathbf{u}(x)=0$ on $\partial \Omega$, and

$$
\int_{\Omega}\left|\frac{\partial u_{j}(x)}{\partial x_{i}}\right|^{2} x_{1}^{2(\gamma-1)} x_{1}^{-2 \beta} \mathrm{~d} x \leq C^{2} \int_{\Omega}|f(x)|^{2} x_{1}^{-2 \beta} \mathrm{~d} x,
$$

where

$$
C^{2} \leq M \frac{2^{16 \beta}}{\left(1-2^{-2\left(\beta+\frac{\gamma+1}{2}\right)}\right)^{2}}
$$

for M independent of β.

Thank you for your attention!

