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Theorem (Hardy 1925)
Given p > 1, the discrete Hardy inequality claims
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for all non-negative sequence {ap}n>1.

p
@ The constant (ﬁ) is optimal.

@ If p=1 (or less), the inequality fails.
Consider the sequence a; =1 and a, =0, for n > 2.

@ The Hardy inequality was introduced in two versions:
discrete (using series) and continuous (using integrals).
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The weighted discrete Hardy inequality
In this project, we consider the following weighted discrete version:
Zu,, (Z ak> < CPY upah, (1)
n=1 n=1

where {up}, - is a weight sequence and 1 < p < 0.

Theorem (Characterization by Andersen-Heinig 1983)
Inequality (1) is valid if and only if

5/ k 5
= sup Z Up Z U9 < oo,
keN =

where q is the conjugate exponent of p, i.e. % + % = 1. In addition,

A < C <A4A.



An application: Solvability of divu = f on Q C R?

Let us consider the following irregular domain in R?
Q:={(x,%) ER?:0<x <1, and 0 < xo <x'}

where v > 1.
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An application: Solvability of divu = f on Q C R?

Our motivation:

Is it possible to replace (%) by a weighted version?
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For what weights w(x1)?
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An application: Solvability of divu = f on Q C R?

Theorem (Hardy = divu = f)

There exists a solution of the divergence equation with

. 2
/ 9u;(x) xlz(v_l)w(x1)_2dx§C2/|f(X)|2w(X1)_2dX (®)
if L
2/ k 2
= su Un u;l < 00,
where

up = 2-(Fng2(=n),

In addition, we estimate the constant C in (®) in terms of A.
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which implies, by the characterization, that for any {a,},~;
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CoroIIary
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CoroIIary
Let 8 > —L—. Then, there exists a solution u of divu = f which
satisfies that u( ) =0 on 02, and

Q

X12(7—1)X1—2B dx < C2/ ]f(x)]le_w dx, (%)
8x; Q
where

216,8

(1 _ 2—2(5+”T“)>2

C’< M

for M independent of 3.



Thank you for your attention!



