An application of a weighted discrete Hardy inequality on trees to Friedrichs' inequality on a fractal domain

A. Aguilar, J. Sabugo-llamas Supervisor: Prof Fernando López-García

Supported by NSF-DMS-1916494 grant PUMP

1. Introduction

Friedrichs Inequality
Fractal T-square and it's tree
Weighted Discrete Hardy Inequality on Trees
2. Measures of Dimension

Box-counting Dimension
Assouad Dimension
3. Results and Further Goals

Friedrichs Inequality

For any Lipschitz domain Ω in \mathbb{R}^{2} there exists a positive constant C such that any holomorphic function $w(z)=f(z)+i g(z)$ satisfies that

$$
\left(\int_{\Omega}|f(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2} \leq C\left(\int_{\Omega}|g(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2}
$$

provided $\int_{\Omega} f=0$ and assuming $z=x+i y$.

Cauchy-Riemann Equations

$$
\frac{\partial f}{\partial x}=\frac{\partial g}{\partial y} \quad \text { and } \quad \frac{\partial f}{\partial y}=-\frac{\partial g}{\partial x}
$$

Friedrichs Inequality

Friedrichs is valid on Lipschitz domains, like rectangles, but not on the cuspidal domain.

Friedrichs Inequality Example

Let $w(z)=z=x+i y, \Omega=[-3,3] \times[-2,2]$.

- Ω Lipschitz
- $w(z)$ holomorphic
- $\int_{\Omega} f=0$

Friedrichs Inequality Example

Let $w(z)=z=x+i y, \Omega=[-3,3] \times[-2,2]$.

- Ω Lipschitz
- $w(z)$ holomorphic
- $\int_{\Omega} f=0$
$\left(\int_{\Omega}|f(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2}=\left(\int_{\Omega} x^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2}=72^{1 / 2}=6 \sqrt{2}$

Friedrichs Inequality Example

Let $w(z)=z=x+i y, \Omega=[-3,3] \times[-2,2]$.
$\circ \Omega$ Lipschitz $\quad \circ w(z)$ holomorphic $\quad \circ \int_{\Omega} f=0$
$\left(\int_{\Omega}|f(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2}=\left(\int_{\Omega} x^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2}=72^{1 / 2}=6 \sqrt{2}$
$\left(\int_{\Omega}|g(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2}=\left(\int_{\Omega} y^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2}=32^{1 / 2}=4 \sqrt{2}$

Friedrichs Inequality Example

Let $w(z)=z=x+i y, \Omega=[-3,3] \times[-2,2]$.

- Ω Lipschitz
- $w(z)$ holomorphic $\quad \circ \int_{\Omega} f=0$

$$
\left(\int_{\Omega}|f|^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2} \leq \frac{3}{2} \cdot\left(\int_{\Omega}|g|^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2}
$$

Friedrichs Inequality Example

Let $w(z)=z=x+i y, \Omega=[-3,3] \times[-2,2]$.

- Ω Lipschitz
- $w(z)$ holomorphic
- $\int_{\Omega} f=0$

Importance of the constant

In general, $C \approx \frac{\partial}{b}$ where a and b are side lengths of the rectangular domain.

Friedrichs Inequality

For any Lipschitz domain Ω in \mathbb{R}^{2} there exists a positive constant
C such that any holomorphic function $w(z)=f(z)+i g(z)$ satisfies that

$$
\left(\int_{\Omega}|f(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2} \leq C\left(\int_{\Omega}|g(x, y)|^{2} \mathrm{~d} x \mathrm{~d} y\right)^{1 / 2}
$$

provided $\int_{\Omega} f=0$ and assuming $z=x+i y$.

Question

- If we let Ω be a regular domain, is it possible to replace $\mathrm{d} x \mathrm{~d} y$ with $d(z)^{\beta} \mathrm{d} x \mathrm{~d} y$?
- What β can we have?
- Is β related to the geometry of Ω ?

T-square type Fractal

T-square type Fractal

The discrete Hardy inequality (on Trees)

The discrete Hardy inequality states

$$
\sum_{n=1}^{\infty}\left(\frac{1}{n} \sum_{k=1}^{n} a_{k}\right)^{2} \leq C \sum_{n=1}^{\infty} a_{n}^{2}
$$

for any non-negative sequence $\left\{a_{n}\right\}_{n \geq 1}$

Box-Counting Dimension

Let $F \subset \mathbb{R}^{n}$. We denote the least number of sets with diameter at most δ as $N_{\delta}(F)$ which forms a cover for F. Then the upper box counting dimension of F is defined as

$$
\overline{\operatorname{dim}}_{B} F=\varlimsup_{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}=\limsup _{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}
$$

Box-Counting Dimension

Let $F \subset \mathbb{R}^{n}$. We denote the least number of sets with diameter at most δ as $N_{\delta}(F)$ which forms a cover for F. Then the upper box counting dimension of F is defined as

$$
\overline{\operatorname{dim}}_{B} F=\varlimsup_{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}=\limsup _{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}
$$

$$
\delta=1 / 3: \frac{\log N_{\delta}(F)}{-\log \delta} \simeq \frac{\log \left(3^{2}\right)}{-\log (1 / 3)}=2
$$

Box-Counting Dimension

Let $F \subset \mathbb{R}^{n}$. We denote the least number of sets with diameter at most δ as $N_{\delta}(F)$ which forms a cover for F. Then the upper box counting dimension of F is defined as

$$
\overline{\operatorname{dim}}_{B} F=\varlimsup_{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}=\limsup _{\delta \rightarrow 0} \frac{\log N_{\delta}(F)}{-\log \delta}
$$

$$
\delta=1 / 3: \frac{\log N_{\delta}(F)}{-\log \delta} \simeq \frac{\log \left(3^{2}\right)}{-\log (1 / 3)}=2
$$

Assouad Dimension

Let $F \subseteq \mathbb{R}^{n}$. Then we define the Assouad Dimension of F as

$$
\operatorname{dim}_{A} F=\inf \left\{s: \text { there exists } C \text { such that } N_{\delta}(B(x, R) \cap F) \leq C\left(\frac{R}{\delta}\right)^{s}\right\}
$$

for all $0<\delta \leq R$ and $x \in F$.

Assouad Dimension

Let $F \subseteq \mathbb{R}^{n}$. Then we define the Assouad Dimension of F as
$\operatorname{dim}_{A} F=\inf \left\{s:\right.$ there exists C such that $\left.N_{\delta}(B(x, R) \cap F) \leq C\left(\frac{R}{\delta}\right)^{s}\right\}$
for all $0<\delta \leq R$ and $x \in F$.

Assouad Dimension

Let $F \subseteq \mathbb{R}^{n}$. Then we define the Assouad Dimension of F as
$\operatorname{dim}_{A} F=\inf \left\{s:\right.$ there exists C such that $\left.N_{\delta}(B(x, R) \cap F) \leq C\left(\frac{R}{\delta}\right)^{s}\right\}$
for all $0<\delta \leq R$ and $x \in F$.

$$
\begin{aligned}
N_{1 / 8}(x, 1 / 2) \approx 16 & \leq C\left(\frac{1 / 2}{1 / 8}\right)^{2} \\
& =C(4)^{2}
\end{aligned}
$$

Assouad Dimension

Let $F \subseteq \mathbb{R}^{n}$. Then we define the Assouad Dimension of F as
$\operatorname{dim}_{A} F=\inf \left\{s:\right.$ there exists C such that $\left.N_{\delta}(B(x, R) \cap F) \leq C\left(\frac{R}{\delta}\right)^{s}\right\}$
for all $0<\delta \leq R$ and $x \in F$.

$$
\begin{aligned}
N_{1 / 8}(x, 1 / 2) \approx 16 & \leq C\left(\frac{1 / 2}{1 / 8}\right)^{2} \\
& =C(4)^{2} \\
N_{1 / 8}(x, 1 / 2) \approx 16 & \leq C\left(\frac{1 / 2}{1 / 8}\right)^{1} \\
& =C(4)^{1}
\end{aligned}
$$

Assouad Dimension

Let $F \subseteq \mathbb{R}^{n}$. Then we define the Assouad Dimension of F as
$\operatorname{dim}_{A} F=\inf \left\{s:\right.$ there exists C such that $\left.N_{\delta}(B(x, R) \cap F) \leq C\left(\frac{R}{\delta}\right)^{s}\right\}$
for all $0<\delta \leq R$ and $x \in F$.

In general $\overline{\operatorname{dim}}_{B}(F) \leq \operatorname{dim}_{A}(F)$

Results and Further Goals

Theorem. Let $\Omega \subset \mathbb{R}^{2}$ be the fractal domain T-square, $F \subset \partial \Omega$ and $p \beta>-\left(2-\operatorname{dim}_{B}(F)\right)$. There exists a constant C such that any holomorphic function $f(z)+i g(z)$ satisfies that

$$
\left(\int_{\Omega}|f(z)|^{p} d_{F}(z)^{p \beta} \mathrm{~d} z\right)^{1 / p} \leq C\left(\int_{\Omega}|g(z)|^{p} d_{F}(z)^{p \beta} \mathrm{~d} z\right)^{1 / p},
$$

provided $\int_{\Omega} f(z) d_{F}(z)^{p \beta} \mathrm{~d} z=0$, where $d_{F}(z)$ is the distance to the set F.

Results and Further Goals

Proof outline. $\Omega \subset \mathbb{R}^{2}, w(z)=f(z)+$ $i g(z)$ holomorphic.

Results and Further Goals

Proof outline. $\Omega \subset \mathbb{R}^{2}, w(z)=f(z)+$ $\operatorname{ig}(z)$ holomorphic.

- Break up domain into overlapping rectangles

0

0

0

Results and Further Goals

Proof outline. $\Omega \subset \mathbb{R}^{2}, w(z)=f(z)+$ ig(z) holomorphic.

- Break up domain into overlapping rectangles
- Show weighted discrete Hardy inequality on trees with weights $u_{t}=v_{t}=\operatorname{diam}\left(Q_{t}\right)^{\beta+2 / p}$

Results and Further Goals

Proof outline. $\Omega \subset \mathbb{R}^{2}, w(z)=f(z)+$ $i g(z)$ holomorphic.

- Break up domain into overlapping rectangles
- Show weighted discrete Hardy inequality on trees with weights $u_{t}=v_{t}=\operatorname{diam}\left(Q_{t}\right)^{\beta+2 / p}$
- Show Friedrichs works on each rectangle

0

Results and Further Goals

Proof outline. $\Omega \subset \mathbb{R}^{2}, w(z)=f(z)+$ $i g(z)$ holomorphic.

- Break up domain into overlapping rectangles
- Show weighted discrete Hardy inequality on trees with weights $u_{t}=v_{t}=\operatorname{diam}\left(Q_{t}\right)^{\beta+2 / p}$
- Show Friedrichs works on each rectangle

- Use the weighted discrete Hardy inequality to extend the validity of Friedrichs from rectangles to the whole domain Ω

Results and Further Goals

Theorem. Let $\Omega \subset \mathbb{R}^{2}$ be the fractal domain T-square, $F \subset \partial \Omega$ and $p \beta>-\left(2-\overline{\operatorname{dim}}_{B}(F)\right)$. There exists a constant C such that any holomorphic function $f(z)+i g(z)$ satisfies that

$$
\left(\int_{\Omega}|f(z)|^{p} d_{F}(z)^{p \beta} \mathrm{~d} z\right)^{1 / p} \leq C\left(\int_{\Omega}|g(z)|^{p} d_{F}(z)^{p \beta} \mathrm{~d} z\right)^{1 / p}
$$

provided $\int_{\Omega} f(z) d_{F}(z)^{p \beta} \mathrm{~d} z=0$, where $d_{F}(z)$ is the distance to the set F.

Results and Further Goals

Theorem. Let $\Omega \subset \mathbb{R}^{2}$ be the fractal domain T-square, $F \subset \partial \Omega$ and $p \beta>-\left(2-\overline{\operatorname{dim}}_{B}(F)\right)$. There exists a constant C such that any holomorphic function $f(z)+i g(z)$ satisfies that

$$
\left(\int_{\Omega}|f(z)|^{p} d_{F}(z)^{p \beta} \mathrm{~d} z\right)^{1 / p} \leq C\left(\int_{\Omega}|g(z)|^{p} d_{F}(z)^{p \beta} \mathrm{~d} z\right)^{1 / p}
$$

provided $\int_{\Omega} f(z) d_{F}(z)^{p \beta} \mathrm{~d} z=0$, where $d_{F}(z)$ is the distance to the set F.

- $p \beta>-\left(2-\overline{\operatorname{dim}}_{B}(F)\right)$

Results and Further Goals

Theorem. Let $\Omega \subset \mathbb{R}^{2}$ be the fractal domain T-square, $F \subset \partial \Omega$ and $p \beta>-\left(2-\overline{\operatorname{dim}}_{B}(F)\right)$. There exists a constant C such that any holomorphic function $f(z)+i g(z)$ satisfies that

$$
\left(\int_{\Omega}|f(z)|^{p} d_{F}(z)^{p \beta} \mathrm{~d} z\right)^{1 / p} \leq C\left(\int_{\Omega}|g(z)|^{p} d_{F}(z)^{p \beta} \mathrm{~d} z\right)^{1 / p}
$$

provided $\int_{\Omega} f(z) d_{F}(z)^{p \beta} \mathrm{~d} z=0$, where $d_{F}(z)$ is the distance to the set F.

- $p \beta>-\left(2-\overline{\operatorname{dim}}_{B}(F)\right)$
- $\overline{\operatorname{dim}}_{B}(F)=\operatorname{dim}_{A}(F)=1$

