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Friedrichs Inequality

For any Lipschitz domain Ω in R2 there exists a positive constant
C such that any holomorphic function w(z) = f (z) + ig(z) satisfies
that (∫

Ω
|f (x , y)|2 dxdy

)1/2

≤ C

(∫
Ω
|g(x , y)|2 dxdy

)1/2

,

provided
∫

Ω f = 0 and assuming z = x + iy .

Cauchy-Riemann Equations

∂f

∂x
=
∂g

∂y
and

∂f

∂y
= −∂g

∂x
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Friedrichs Inequality

Friedrichs is valid on Lipschitz domains, like rectangles, but not on
the cuspidal domain.
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Friedrichs Inequality Example

Let w(z) = z = x + iy , Ω = [−3, 3]× [−2, 2].

◦ Ω Lipschitz ◦ w(z) holomorphic ◦
∫

Ω f = 0
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Friedrichs Inequality Example

Let w(z) = z = x + iy , Ω = [−3, 3]× [−2, 2].

◦ Ω Lipschitz ◦ w(z) holomorphic ◦
∫

Ω f = 0(∫
Ω
|f (x , y)|2 dxdy

)1/2

=

(∫
Ω
x2 dxdy

)1/2

= 721/2 = 6
√
2
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Friedrichs Inequality Example

Let w(z) = z = x + iy , Ω = [−3, 3]× [−2, 2].

◦ Ω Lipschitz ◦ w(z) holomorphic ◦
∫

Ω f = 0(∫
Ω
|f (x , y)|2 dxdy

)1/2

=

(∫
Ω
x2 dxdy

)1/2

= 721/2 = 6
√
2

(∫
Ω
|g(x , y)|2 dxdy

)1/2

=

(∫
Ω
y2 dxdy

)1/2

= 321/2 = 4
√
2
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Friedrichs Inequality Example

Let w(z) = z = x + iy , Ω = [−3, 3]× [−2, 2].

◦ Ω Lipschitz ◦ w(z) holomorphic ◦
∫

Ω f = 0(∫
Ω
|f |2 dxdy

)1/2

≤ 3
2
·
(∫

Ω
|g |2 dxdy

)1/2
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Friedrichs Inequality Example

Let w(z) = z = x + iy , Ω = [−3, 3]× [−2, 2].

◦ Ω Lipschitz ◦ w(z) holomorphic ◦
∫

Ω f = 0

Importance of the constant
In general, C ≈ a

b where a and b are side lengths of the rectangular
domain.
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Friedrichs Inequality

For any Lipschitz domain Ω in R2 there exists a positive constant
C such that any holomorphic function w(z) = f (z) + ig(z) satisfies
that (∫

Ω
|f (x , y)|2 dxdy

)1/2

≤ C

(∫
Ω
|g(x , y)|2 dxdy

)1/2

,

provided
∫

Ω f = 0 and assuming z = x + iy .

Question

◦ If we let Ω be a regular domain, is it possible to replace dxdy
with d(z)β dxdy?
◦ What β can we have?
◦ Is β related to the geometry of Ω?
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T-square type Fractal
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T-square type Fractal
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The discrete Hardy inequality (on Trees)

The discrete Hardy inequality states

∞∑
n=1

(
1
n

n∑
k=1

ak

)2

≤ C
∞∑
n=1

a2
n,

for any non-negative sequence {an}n≥1
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Box-Counting Dimension

Let F ⊂ Rn. We denote the least number of sets with diameter at
most δ as Nδ(F ) which forms a cover for F . Then the upper box
counting dimension of F is defined as

dimBF = lim
δ→0

log Nδ(F )
− log δ = lim sup

δ→0

log Nδ(F )
− log δ

δ = 1/3 : log Nδ(F )
− log δ

' log(32)
− log(1/3)

= 2 δ = 1/4 : log Nδ(F )
− log δ

' log(42)
− log(1/4)

= 2
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Assouad Dimension

Let F ⊆ Rn. Then we define the Assouad Dimension of F as

dimA F = inf

{
s : there exists C such that Nδ(B(x ,R) ∩ F ) ≤ C

(
R

δ

)s
}

for all 0 < δ ≤ R and x ∈ F .
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Assouad Dimension

Let F ⊆ Rn. Then we define the Assouad Dimension of F as

dimA F = inf

{
s : there exists C such that Nδ(B(x ,R) ∩ F ) ≤ C

(
R

δ

)s
}

for all 0 < δ ≤ R and x ∈ F .

N1/8(x , 1/2) ≈ 16 ≤ C

(
1/2
1/8

)2

= C (4)2
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Assouad Dimension

Let F ⊆ Rn. Then we define the Assouad Dimension of F as

dimA F = inf

{
s : there exists C such that Nδ(B(x ,R) ∩ F ) ≤ C

(
R

δ

)s
}

for all 0 < δ ≤ R and x ∈ F .

N1/8(x , 1/2) ≈ 16 ≤ C

(
1/2
1/8

)2

= C (4)2

N1/8(x , 1/2) ≈ 16 ≤ C

(
1/2
1/8

)1

= C (4)1
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Assouad Dimension

Let F ⊆ Rn. Then we define the Assouad Dimension of F as

dimA F = inf

{
s : there exists C such that Nδ(B(x ,R) ∩ F ) ≤ C

(
R

δ

)s
}

for all 0 < δ ≤ R and x ∈ F .

In general dimB(F ) ≤ dimA(F )
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Results and Further Goals

Theorem. Let Ω ⊂ R2 be the fractal domain T -square, F ⊂ ∂Ω
and pβ > −(2− dimB(F )). There exists a constant C such that
any holomorphic function f (z) + ig(z) satisfies that(∫

Ω
|f (z)|pdF (z)pβ dz

)1/p

≤ C

(∫
Ω
|g(z)|pdF (z)pβ dz

)1/p

,

provided
∫

Ω f (z)dF (z)pβ dz = 0, where dF (z) is the distance to the
set F .
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Results and Further Goals

Proof outline. Ω ⊂ R2, w(z) = f (z) +
ig(z) holomorphic.
◦
◦
◦

◦
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Results and Further Goals

Proof outline. Ω ⊂ R2, w(z) = f (z) +
ig(z) holomorphic.
◦ Break up domain into overlapping

rectangles
◦
◦

◦
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Results and Further Goals

Proof outline. Ω ⊂ R2, w(z) = f (z) +
ig(z) holomorphic.
◦ Break up domain into overlapping

rectangles
◦ Show weighted discrete Hardy

inequality on trees with weights
ut = vt = diam(Qt)

β+2/p

◦

◦
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Results and Further Goals

Proof outline. Ω ⊂ R2, w(z) = f (z) +
ig(z) holomorphic.
◦ Break up domain into overlapping

rectangles
◦ Show weighted discrete Hardy

inequality on trees with weights
ut = vt = diam(Qt)

β+2/p

◦ Show Friedrichs works on each
rectangle

◦ Use the weighted discrete Hardy inequality to extend the
validity of Friedrichs from rectangles to the whole domain Ω
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Results and Further Goals

Theorem. Let Ω ⊂ R2 be the fractal domain T -square, F ⊂ ∂Ω
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,

provided
∫

Ω f (z)dF (z)pβ dz = 0, where dF (z) is the distance to the
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◦ pβ > −(2− dimB(F ))

◦ dimB(F ) = dimA(F ) = 1
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