An application of a weighted discrete Hardy inequality on trees to Friedrichs' inequality on a fractal domain

A. Aguilar, J. Sabugo-llamas Supervisor: Prof Fernando López-García

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Supported by NSF-DMS-1916494 grant PUMP

▲ロ▶ ▲周▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々ぐ

1. Introduction

Friedrichs Inequality Fractal T-square and it's tree Weighted Discrete Hardy Inequality on Trees

- 2. Measures of Dimension Box-counting Dimension Assouad Dimension
- 3. Results and Further Goals

Friedrichs Inequality

For any Lipschitz domain Ω in \mathbb{R}^2 there exists a positive constant C such that any holomorphic function w(z) = f(z) + ig(z) satisfies that

$$\left(\int_{\Omega} |f(x,y)|^2 \,\mathrm{d}x \mathrm{d}y\right)^{1/2} \leq C \left(\int_{\Omega} |g(x,y)|^2 \,\mathrm{d}x \mathrm{d}y\right)^{1/2},$$

provided $\int_{\Omega} f = 0$ and assuming z = x + iy.

Cauchy-Riemann Equations $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y} \quad \text{and} \quad \frac{\partial f}{\partial y} = -\frac{\partial g}{\partial x}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Friedrichs Inequality

Friedrichs is valid on Lipschitz domains, like rectangles, but not on the cuspidal domain.

Results and Further Goals

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Friedrichs Inequality Example

Let
$$w(z) = z = x + iy$$
, $\Omega = [-3, 3] \times [-2, 2]$.

 $\circ \ \Omega$ Lipschitz $\circ w(z)$ holomorphic $\circ \int_{\Omega} f = 0$

L

Measures of Dimension

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Friedrichs Inequality Example

Let
$$w(z) = z = x + iy$$
, $\Omega = [-3, 3] \times [-2, 2]$.
 $\circ \Omega$ Lipschitz $\circ w(z)$ holomorphic $\circ \int_{\Omega} f = 0$
 $\left(\int_{\Omega} |f(x, y)|^2 dx dy\right)^{1/2} = \left(\int_{\Omega} x^2 dx dy\right)^{1/2} = 72^{1/2} = 6\sqrt{2}$

Results and Further Goals

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Friedrichs Inequality Example

Let
$$w(z) = z = x + iy$$
, $\Omega = [-3, 3] \times [-2, 2]$.

 $\circ \ \Omega$ Lipschitz $\circ w(z)$ holomorphic $\circ \int_{\Omega} f = 0$

$$\left(\int_{\Omega} |f(x,y)|^2 \, \mathrm{d}x \mathrm{d}y\right)^{1/2} = \left(\int_{\Omega} x^2 \, \mathrm{d}x \mathrm{d}y\right)^{1/2} = 72^{1/2} = 6\sqrt{2}$$

$$\left(\int_{\Omega} |g(x,y)|^2 \, \mathrm{d}x \mathrm{d}y\right)^{1/2} = \left(\int_{\Omega} y^2 \, \mathrm{d}x \mathrm{d}y\right)^{1/2} = 32^{1/2} = 4\sqrt{2}$$

Results and Further Goals

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Friedrichs Inequality Example

Let
$$w(z) = z = x + iy$$
, $\Omega = [-3,3] \times [-2,2]$.
 $\circ \Omega$ Lipschitz $\circ w(z)$ holomorphic $\circ \int_{\Omega} f = 0$
 $\left(\int_{\Omega} |f|^2 \, \mathrm{d}x \mathrm{d}y\right)^{1/2} \leq \frac{3}{2} \cdot \left(\int_{\Omega} |g|^2 \, \mathrm{d}x \mathrm{d}y\right)^{1/2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Friedrichs Inequality Example

Let
$$w(z) = z = x + iy$$
, $\Omega = [-3, 3] \times [-2, 2]$.

•
$$\Omega$$
 Lipschitz • $w(z)$ holomorphic • $\int_{\Omega} f = 0$

Importance of the constant

In general, $C \approx \frac{a}{b}$ where a and b are side lengths of the rectangular domain.

Results and Further Goals

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Friedrichs Inequality

For any Lipschitz domain Ω in \mathbb{R}^2 there exists a positive constant C such that any holomorphic function w(z) = f(z) + ig(z) satisfies that

$$\left(\int_{\Omega} |f(x,y)|^2 \, \mathrm{d}x \mathrm{d}y\right)^{1/2} \leq C \left(\int_{\Omega} |g(x,y)|^2 \, \mathrm{d}x \mathrm{d}y\right)^{1/2},$$

provided $\int_{\Omega} f = 0$ and assuming z = x + iy.

Question

- If we let Ω be a regular domain, is it possible to replace dxdy with $d(z)^{\beta} dxdy$?
- What β can we have?
- Is β related to the geometry of Ω ?

Results and Further Goals

T-square type Fractal

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Results and Further Goals

T-square type Fractal

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ ● のへで

Results and Further Goals

The discrete Hardy inequality (on Trees)

The discrete Hardy inequality states

$$\sum_{n=1}^{\infty} \left(\frac{1}{n} \sum_{k=1}^{n} a_k\right)^2 \le C \sum_{n=1}^{\infty} a_n^2,$$

for any non-negative sequence $\{a_n\}_{n\geq 1}$

▲ロト ▲御ト ▲ヨト ▲ヨト 三国 - のへで

Box-Counting Dimension

Let $F \subset \mathbb{R}^n$. We denote the least number of sets with diameter at most δ as $N_{\delta}(F)$ which forms a cover for F. Then the *upper* box counting dimension of F is defined as

$$\overline{\dim}_B F = \overline{\lim_{\delta \to 0}} \ \frac{\log N_{\delta}(F)}{-\log \delta} = \limsup_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}$$

・ロト・日本・モト・モート ヨー うへぐ

Box-Counting Dimension

Let $F \subset \mathbb{R}^n$. We denote the least number of sets with diameter at most δ as $N_{\delta}(F)$ which forms a cover for F. Then the *upper* box counting dimension of F is defined as

$$\overline{\dim}_B F = \overline{\lim_{\delta \to 0}} \ \frac{\log N_{\delta}(F)}{-\log \delta} = \limsup_{\delta \to 0} \frac{\log N_{\delta}(F)}{-\log \delta}$$

Box-Counting Dimension

Let $F \subset \mathbb{R}^n$. We denote the least number of sets with diameter at most δ as $N_{\delta}(F)$ which forms a cover for F. Then the *upper* box counting dimension of F is defined as

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

Assouad Dimension

Let
$$F \subseteq \mathbb{R}^n$$
. Then we define the Assouad Dimension of F as
 $\dim_A F = \inf \left\{ s : \text{ there exists } C \text{ such that } N_{\delta}(B(x, R) \cap F) \leq C \left(\frac{R}{\delta}\right)^s \right\}$
for all $0 < \delta \leq R$ and $x \in F$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Assouad Dimension

Let $F \subseteq \mathbb{R}^n$. Then we define the Assouad Dimension of F as

$$\dim_A F = \inf\left\{s: ext{ there exists } C ext{ such that } N_\delta(B(x,R)\cap F) \leq Cigg(rac{R}{\delta}igg)^s
ight\}$$

for all $0 < \delta \leq R$ and $x \in F$.

Results and Further Goals

Assouad Dimension

Let $F \subseteq \mathbb{R}^n$. Then we define the Assouad Dimension of F as

$$\dim_A F = \inf\left\{s: ext{ there exists } C ext{ such that } N_\delta(B(x,R)\cap F) \leq Cigg(rac{R}{\delta}igg)^s
ight\}$$

for all $0 < \delta \leq R$ and $x \in F$.

$$N_{1/8}(x, 1/2) pprox 16 \le C \left(rac{1/2}{1/8}
ight)^2$$

= $C (4)^2$

Introduction			Measures of Dimension		Results and Further Goals	
			0			
	1					

Assouad Dimension

Let $F \subseteq \mathbb{R}^n$. Then we define the Assouad Dimension of F as

$$\dim_A F = \inf\left\{s: ext{ there exists } C ext{ such that } N_\delta(B(x,R)\cap F) \leq Cigg(rac{R}{\delta}igg)^s
ight\}$$

for all $0 < \delta \leq R$ and $x \in F$.

$$\begin{split} N_{1/8}(x,1/2) &\approx 16 \leq C \left(\frac{1/2}{1/8}\right)^2 \\ &= C \left(4\right)^2 \\ N_{1/8}(x,1/2) &\approx 16 \leq C \left(\frac{1/2}{1/8}\right)^1 \\ &= C \left(4\right)^1 \end{split}$$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Assouad Dimension

Let $F \subseteq \mathbb{R}^n$. Then we define the Assouad Dimension of F as $\dim_A F = \inf \left\{ s : \text{ there exists } C \text{ such that } N_{\delta}(B(x, R) \cap F) \leq C \left(\frac{R}{\delta}\right)^s \right\}$ for all $0 < \delta \leq R$ and $x \in F$.

In general $\overline{\dim}_B(F) \leq \dim_A(F)$

Results and Further Goals

Theorem. Let $\Omega \subset \mathbb{R}^2$ be the fractal domain *T*-square, $F \subset \partial \Omega$ and $p\beta > -(2 - \overline{\dim}_B(F))$. There exists a constant *C* such that any holomorphic function f(z) + ig(z) satisfies that

$$\left(\int_{\Omega} |f(z)|^{p} d_{F}(z)^{p\beta} \, \mathrm{d}z\right)^{1/p} \leq C \left(\int_{\Omega} |g(z)|^{p} d_{F}(z)^{p\beta} \, \mathrm{d}z\right)^{1/p},$$

Results and Further Goals $0 \bullet 0$

Results and Further Goals

Proof outline. $\Omega \subset \mathbb{R}^2$, w(z) = f(z) + ig(z) holomorphic.

0 0

0

0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Results and Further Goals

Results and Further Goals

Proof outline. $\Omega \subset \mathbb{R}^2$, w(z) = f(z) + ig(z) holomorphic.

• Break up domain into overlapping rectangles

▲□▶ ▲□▶ ▲豆▶ ▲豆▶ ̄豆 _ のへで

Results and Further Goals

Results and Further Goals

Proof outline. $\Omega \subset \mathbb{R}^2$, w(z) = f(z) + ig(z) holomorphic.

- Break up domain into overlapping rectangles
- Show weighted discrete Hardy inequality on trees with weights $u_t = v_t = diam(Q_t)^{\beta+2/p}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

Results and Further Goals $0 \bullet 0$

Results and Further Goals

Proof outline. $\Omega \subset \mathbb{R}^2$, w(z) = f(z) + ig(z) holomorphic.

- Break up domain into overlapping rectangles
- Show weighted discrete Hardy inequality on trees with weights $u_t = v_t = diam(Q_t)^{\beta+2/p}$
- Show Friedrichs works on each rectangle

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへ⊙

0

Results and Further Goals $0 \bullet 0$

Results and Further Goals

Proof outline. $\Omega \subset \mathbb{R}^2$, w(z) = f(z) + ig(z) holomorphic.

- Break up domain into overlapping rectangles
- Show weighted discrete Hardy inequality on trees with weights $u_t = v_t = diam(Q_t)^{\beta+2/p}$
- Show Friedrichs works on each rectangle
- $\circ~$ Use the weighted discrete Hardy inequality to extend the validity of Friedrichs from rectangles to the whole domain Ω

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ うへつ

Results and Further Goals

Theorem. Let $\Omega \subset \mathbb{R}^2$ be the fractal domain *T*-square, $F \subset \partial \Omega$ and $p\beta > -(2 - \overline{\dim}_B(F))$. There exists a constant *C* such that any holomorphic function f(z) + ig(z) satisfies that

$$\left(\int_{\Omega} |f(z)|^{p} d_{F}(z)^{p\beta} \, \mathrm{d}z\right)^{1/p} \leq C \left(\int_{\Omega} |g(z)|^{p} d_{F}(z)^{p\beta} \, \mathrm{d}z\right)^{1/p},$$

Results and Further Goals

Theorem. Let $\Omega \subset \mathbb{R}^2$ be the fractal domain *T*-square, $F \subset \partial \Omega$ and $p\beta > -(2 - \overline{\dim}_B(F))$. There exists a constant *C* such that any holomorphic function f(z) + ig(z) satisfies that

$$\left(\int_{\Omega} |f(z)|^{p} d_{F}(z)^{p\beta} \, \mathrm{d}z\right)^{1/p} \leq C \left(\int_{\Omega} |g(z)|^{p} d_{F}(z)^{p\beta} \, \mathrm{d}z\right)^{1/p},$$

•
$$p\beta > -(2 - \overline{\dim}_B(F))$$

Results and Further Goals

Theorem. Let $\Omega \subset \mathbb{R}^2$ be the fractal domain *T*-square, $F \subset \partial \Omega$ and $p\beta > -(2 - \overline{\dim}_B(F))$. There exists a constant *C* such that any holomorphic function f(z) + ig(z) satisfies that

$$\left(\int_{\Omega} |f(z)|^{p} d_{F}(z)^{p\beta} \, \mathrm{d}z\right)^{1/p} \leq C \left(\int_{\Omega} |g(z)|^{p} d_{F}(z)^{p\beta} \, \mathrm{d}z\right)^{1/p},$$

- $p\beta > -(2 \overline{\dim}_B(F))$
- $\circ \ \overline{\dim}_B(F) = \dim_A(F) = 1$