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The classical idea

Theorem (L. E. Payne & H. F. Weinberger ’60)

Let Ω ⊂ Rn be a bounded convex domain with diameter d for
n ≥ 1. Then(∫

Ω
|u(x)− uΩ|2 dx

)1/2

≤ d

π

(∫
Ω
|∇u(x)|2 dx

)1/2

,

where u ∈ C∞(Ω), and uΩ = 1
|Ω|
∫

Ω u.

Observe that
∫

Ω (u(x)− uΩ) dx = 0.



The weighted one-dimensional case

Lemma
Let ρ be a non-negative concave function on the interval [0, L],
and let m ∈ N. Then for any smooth function g satisfying∫

[0,L]
g(t)ρm(t) dt = 0,

we have that(∫
[0,L]
|g(t)|2ρm(t)dt

) 1
2

≤ L

π

(∫
[0,L]
|g ′(t)|2ρm(t) dt

) 1
2

.

Additionally, the constant 1
π is optimal.
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The “slicing” method

Lemma
Let Ω ⊂ Rn be a convex domain with diameter d. Assume that f is
a smooth function that satisfies

∫
Ω f (x) dx = 0.

Then for any
δ > 0, there are disjoint convex domains Ωi , i = 1, ..., k such that

Ω̄ =
k⋃

i=1

Ω̄i ,

∫
Ωi

f (x)dx = 0, i = 1, ..., k ,

and for each Ωi , there is a rectangular coordinate system such that

Ωi ⊂ {(x1, ..., xn) ∈ Rn : 0 ≤ x1 ≤ di and |xj | ≤ δ, j = 2, ..., n}.
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The “slicing” method - proof for planar case (n = 2)
Given α ∈ [0, 2π], there is a unique hyperplane Hα with normal

vα = (cos(α), sin(α)),

such that Hα divides Ω into two convex sets Ω′α and Ω′′α with equal
area (vα points in the direction of Ω′α).

Define

I (α) :=

∫
Ω′

α

f (x)dx .

Since I (α) = −I (α+ π), by continuity there exists an α0 such that

I (α0) = 0.

We then have that |Ω′| = |Ω′′| = 1
2 |Ω| and∫

Ω′
f (x)dx =

∫
Ω′′

f (x)dx = 0 atα0.
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The “slicing” method - proof for planar case (n = 2)

Applying this recursively, we divide Ω into a collection of convex
subsets Ωi , for 1 ≤ i ≤ k , such that |Ωi | is arbitrarily small.

Then each Ωi is contained between two parallel hyperplanes of
distance at most 2δ.

h2

2
≤ h(di )

2
≤ |Ωi | =⇒ h ≤ (2|Ωi |)

1
2 < δ.

We rotate each Ωi so that the hyperplanes have normal v = (0, 1),
and the desired decomposition is obtained. 2
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The two-dimensional case

Theorem
Let Ω ⊂ R2 be a convex domain with diameter d. Then for all
smooth f satisfying

∫∫
Ω f (x1, x2) dx1 dx2 = 0,

(∫∫
Ω
|f (x1, x2)|2 dx1 dx2

)1/2

≤ d

π

(∫∫
Ω
|∇f (x1, x2)|2 dx1 dx2

)1/2

.
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The two-dimensional case - proof

Assume that Ω has been partitioned into a collection of convex
subsets Ωi as described in the previous lemma.

Define R(x1) as the function that describes the length of the
intersection of the vertical line passing through x1 and Ωi .

By convexity, R(x1) = ρn−1(x1), where ρ(x1) is a concave function.

∫∫
Ωi

|f (x1, x2)|2 dx1 dx2 =

∫
[0,di ]
|f (x1, 0)|2R(x1)dx1 + E1(δ, i)

0 =

∫∫
Ωi

f (x1, x2)dx1 dx2 =

∫
[0,di ]

f (x1, 0)R(x1)dx1 + E2(δ, i)

∫∫
Ωi

∣∣∣∣ ∂f∂x1
(x1, x2)

∣∣∣∣2 dx1 dx2 =

∫
[0,di ]

∣∣∣∣ ∂f∂x1
(x1, 0)

∣∣∣∣2 R(x1)dx1+E3(δ, i)
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The two-dimensional case - proof

Some estimates

∣∣∣∣∣
∫∫

Ωi

|f (x1, x2)|2 dx1 dx2 −
∫

[0,di ]
|f (x1, 0)|2R(x1) dx1

∣∣∣∣∣ ≤ c1|Ωi |δ

∣∣∣∣∣
∫∫

Ωi

f (x1, x2) dx1 dx2 −
∫

[0,di ]
f (x1, 0)R(x1) dx1

∣∣∣∣∣ ≤ c2|Ωi |δ

∣∣∣∣∣
∫∫

Ωi

∣∣∣∣ ∂f∂x1
(x1, x2)

∣∣∣∣2 dx1 dx2 −
∫

[0,di ]

∣∣∣∣ ∂f∂x1
(x1, 0)

∣∣∣∣2 R(x1)dx1

∣∣∣∣∣ ≤ c3|Ωi |δ

The constants c1, c2, and c3 depend only on f , not on the partition.



The two-dimensional case - proof

Let

g(x1) := f (x1, 0)− 1

|Ωi |
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The two-dimensional case - proof
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i

π2

∫∫
Ωi

|∇f (x1, x2)|2 dx1 dx2

+|Ωi |δ(c1 + c2fΩi
+ c3

d2
i

π2
)
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The two-dimensional case - proof

We’ve now obtained the following inequality over Ωi :∫∫
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Ω
|∇f (x1, x2)|2 dx1 dx2 + |Ω|δC



The two-dimensional case - proof

We’ve now obtained the following inequality over Ωi :∫∫
Ωi

|f (x1, x2)|2 dx1 dx2 ≤
d2
i

π2

∫∫
Ωi

|∇f (x1, x2)|2 dx1 dx2

+|Ωi |δ(c1 + c2fΩi
+ c3

d2
i

π2
)

Take the sum of all inequalities on each Ωi , 1 ≤ i ≤ k to obtain:∫∫
Ω
|f (x1, x2)|2 dx1 dx2 ≤

d2

π2

∫∫
Ω
|∇f (x1, x2)|2 dx1 dx2 + |Ω|δC



A comment about Ω ⊂ Rn for n = 2 or n ≥ 3

In the original paper by Payne and Weinberger, it was thought that
R(x) is concave, but actually R(x) = ρn−1(x), with ρ(x) concave.

This was fixed by M. Bebendorf in 2003, who showed that the
original idea works with R(x) = ρm(x) for m ∈ N.
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A note on the constant

For bounded convex domains with diameter d , the Poincaré
constant is at most d

π for L2 spaces.

In certain cases, this constant can be explicitly found. A unit right
isosceles triangle, for example, has the constant 1

π while the

diameter is actually 2
1
2 .
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Thank you for your attention!


