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The classical idea

Theorem (L. E. Payne & H. F. Weinberger '60)

Let Q C R" be a bounded convex domain with diameter d for
n>1. Then

(/Q]u(x)—uQFdx>l/2 S:(/Q\Vu(x)]zdx>1/2,

where u € C*(Q), and uq = ﬁ Jou.

Observe that [ (u(x) — ug) dx = 0.
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Let p be a non-negative concave function on the interval [0, L],
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The weighted one-dimensional case

Lemma
Let p be a non-negative concave function on the interval [0, L],
and let m € N. Then for any smooth function g satisfying

/ g(t)p™(t)de =0,
[0,L]

we have that

(/ |g(t)|2pm(t)dt> sL(/ |g'(t)|2pm(t)dt>.
[0.L] T \/lo.0]

Additionally, the constant % is optimal.
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The “slicing” method

Lemma
Let Q C R" be a convex domain with diameter d. Assume that fis

a smooth function that satisfies [ f(x)dx = 0. Then for any
0 > 0, there are disjoint convex domains Q;,i =1, ..., k such that

k
Q=J%, /Q‘f(x)dx:o, i=1,..k,
i=1 I

and for each ;, there is a rectangular coordinate system such that

Qi C{(x1,....xn) e R":0 < xy < diand |xj| <0,j=2,...,n}.



The “slicing” method - proof for planar case (n = 2)
Given « € [0, 27], there is a unique hyperplane H,, with normal

Vo = (cos(), sin(c)),

such that H, divides Q into two convex sets 2/ and Q7 with equal
area (v, points in the direction of ).
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The “slicing” method - proof for planar case (n = 2)
Given « € [0, 27], there is a unique hyperplane H,, with normal

Vo = (cos(), sin(c)),

such that H, divides Q into two convex sets 2/ and Q7 with equal
area (v, points in the direction of ).
Define

I(a) == /Q F(x) dx.

/
(e

Since I(a) = —I(a+ ), by continuity there exists an «q such that
I(cg) = 0.
We then have that || = |Q"| = $|Q| and

f(x)dx = f(x)dx = 0at ap.
Q/ Q//
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Applying this recursively, we divide Q into a collection of convex
subsets €, for 1 < i < k, such that |Q;| is arbitrarily small.
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Applying this recursively, we divide Q into a collection of convex
subsets €, for 1 < i < k, such that |Q;| is arbitrarily small.

Then each €; is contained between two parallel hyperplanes of
distance at most 2§.
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The “slicing” method - proof for planar case (n = 2)

Applying this recursively, we divide Q into a collection of convex
subsets €, for 1 < i < k, such that |Q;| is arbitrarily small.

Then each €; is contained between two parallel hyperplanes of
distance at most 2§.

2 .
1 _ h(d)

> < S5C <l = h< @) <6

We rotate each Q; so that the hyperplanes have normal v = (0, 1),
and the desired decomposition is obtained. O



The two-dimensional case

Theorem
Let Q C R? be a convex domain with diameter d. Then for all
smooth f satisfying [ [, f(x1,x2) dxy dx; =0,



The two-dimensional case

Theorem

Let Q C R? be a convex domain with diameter d. Then for all
smooth f satisfying [ [, f(x1,x2) dxy dx; =0,

12 4 1/2
<// ]f(X1,X2)|2dX1 dX2> < — (// ]Vf(xl,X2)|2dX1 dx2> .
Q ™ Q
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The two-dimensional case - proof
Assume that €2 has been partitioned into a collection of convex

subsets €2; as described in the previous lemma.

Define R(x1) as the function that describes the length of the
intersection of the vertical line passing through x; and ;.

By convexity, R(x1) = p"~%(x1), where p(x1) is a concave function.

// ’f(X]_,X2)‘2dX]_ dxo :/ |f(X1,O)‘2R(X1)dX1+E1(5, I)
Q;

sdi

0= // f(Xl,Xg)dxl dxy = / Xl,O)R X1)dX1 + E2(5 I)
Q; [0,d;]

dx1 dxy, = /
[0,d]

2

X1,X2 R(Xl)dX1+E3((5, i)

X17

8X1



The two-dimensional case - proof

Some estimates

‘// ‘f(X17X2)’2dX1 dX2 —/ ’f(Xl,O)IZR(Xl)Xm S C1’Q,"(5
Q; [0,di]

‘// f(Xl,Xg)dxl dX2 —/ f(Xl,O)R(Xl)dxl S C2’Q,"(5
Q; [0,di]

of 2

X1,X2) XmdX2_/[0d] 87)(1()(170) R(xl)dxl §C3’Q,"(5

The constants ¢y, ¢p, and ¢3 depend only on f, not on the partition.
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The two-dimensional case - proof

Let
1
g(x1) == f(x1,0) — —— f(x1,0)R(x1) dx1
12| Jio,d)
— g(x1)R(x1)dx1 =0

[Ovdf]



The two-dimensional case - proof

Let

g(xa) = f(x1,0) — — F(x2,0)R(x1) dx
191 Ji0.41
— g(x1)R(x1)dx; =0

[Ovdf]

and by the weighted one-dimensional lemma,
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The two-dimensional case - proof

Let

g(xa) = f(x1,0) — — F(x2,0)R(x1) dx
191 Ji0.41
— g(x1)R(x1)dx; =0

[Ovdf]

and by the weighted one-dimensional lemma,

5 d? of 5
| leboPRe) b < % [ 10 00,0)2R00) .
[0,d/] ™ Jio,d] X1

By triangle inequality,

d? of

2 .
77-2 o d]|8Xl(X1, )| R(Xl)dX1+C2fQi|Q,|5.

/ |f(x1,0)R(x1)|? dxq <
[Oadf]



The two-dimensional case - proof

Remark

// ]f(xl,xz)fzdxl dxo = / ’f(Xl,O)FR(Xl)Xm + C1’Q,"(5
Q; [0,d;

i



The two-dimensional case - proof

Remark
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orf
R(Xl) dX1+C3|Q,"5
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The two-dimensional case - proof

Remark

/ ]f(xl,xz)fzdxl dxo = / ’f(Xl,O)FR(Xl)Xm + C1’Q,"(5
Q;

»di

2

orf
R(Xl) dX1+C3|Q,"5

8X1

X1,X2

(X17 0)

dX1 dX2 = /
[0,di]

So by repeated application of the triangle inequality, we obtain

d?
// |f(X1,X2)|2dX1 dX2 S ’2// IVf(Xl,X2)|2dX1 dX2
Q; m Q;

d?
+|Qil6(c1 + eofg, + 63;'2)



The two-dimensional case - proof

We've now obtained the following inequality over €2;:
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The two-dimensional case - proof

We've now obtained the following inequality over €2;:

d?
// £ (x1, %) 2 dxt dxa < 2// V(0 0) % dxt o
Q,’ T Qi
2

d-:
+|Q,'|<5(C1 -+ CQfQI- + C37_T’2)
Take the sum of all inequalities on each ;, 1 </ < k to obtain:

d2
// |f(x1,x2)|2dxl dxy < 7T2// |Vf(x1,X2)|2dx1 dxa +|Q|0C
Q Q
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A comment about Q C R" forn=2o0orn>3

In the original paper by Payne and Weinberger, it was thought that
R(x) is concave, but actually R(x) = p"(x), with p(x) concave.

This was fixed by M. Bebendorf in 2003, who showed that the
original idea works with R(x) = p™(x) for m € N.
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A note on the constant

For bounded convex domains with diameter d, the Poincaré
constant is at most % for L2 spaces.

In certain cases, this constant can be explicitly found. A unit right
isosceles triangle, for example, has the constant % while the

. . 1
diameter is actually 22.



Thank you for your attention!



