The optimal constant of the Poincaré Inequality on convex domains

James K. Alcala ¹

Department of Mathematics University of California, Riverside

Mathematical Physics and Dynamical Systems Workshop May 19th, 2017

¹Under guidance of Professor Fernando López-García - (B) (E) (E) (E) (B)

Outline

- 1. The classical idea
- 2. The one-dimensional case
- 3. The "slicing" method
- 4. The two-dimensional case

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

5. Some comments

The classical idea

Theorem (L. E. Payne & H. F. Weinberger '60) Let $\Omega \subset \mathbb{R}^n$ be a bounded convex domain with diameter d for $n \ge 1$. Then

$$\left(\int_{\Omega}|u(x)-u_{\Omega}|^{2}\,\mathrm{d}x\right)^{1/2} \leq \frac{d}{\pi}\left(\int_{\Omega}|\nabla u(x)|^{2}\,\mathrm{d}x\right)^{1/2},$$

where $u \in C^{\infty}(\Omega)$, and $u_{\Omega} = \frac{1}{|\Omega|} \int_{\Omega} u$.

Observe that $\int_{\Omega} (u(x) - u_{\Omega}) dx = 0.$

The weighted one-dimensional case

Lemma

Let ρ be a non-negative concave function on the interval [0, L], and let $m \in \mathbb{N}$. Then for any smooth function g satisfying

$$\int_{[0,L]} g(t)\rho^m(t)\,\mathrm{d}t = 0,$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The weighted one-dimensional case

Lemma

Let ρ be a non-negative concave function on the interval [0, L], and let $m \in \mathbb{N}$. Then for any smooth function g satisfying

$$\int_{[0,L]} g(t)\rho^m(t)\,\mathrm{d}t = 0,$$

we have that

$$\left(\int_{[0,L]} |g(t)|^2 \rho^m(t) \, \mathrm{d}t\right)^{\frac{1}{2}} \leq \frac{L}{\pi} \left(\int_{[0,L]} |g'(t)|^2 \rho^m(t) \, \mathrm{d}t\right)^{\frac{1}{2}}.$$

The weighted one-dimensional case

Lemma

Let ρ be a non-negative concave function on the interval [0, L], and let $m \in \mathbb{N}$. Then for any smooth function g satisfying

$$\int_{[0,L]} g(t)\rho^m(t)\,\mathrm{d}t = 0,$$

we have that

$$\left(\int_{[0,L]} |g(t)|^2 \rho^m(t) \, \mathrm{d}t\right)^{\frac{1}{2}} \leq \frac{L}{\pi} \left(\int_{[0,L]} |g'(t)|^2 \rho^m(t) \, \mathrm{d}t\right)^{\frac{1}{2}}.$$

Additionally, the constant $\frac{1}{\pi}$ is optimal.

The "slicing" method

Lemma

Let $\Omega \subset \mathbb{R}^n$ be a convex domain with diameter d. Assume that f is a smooth function that satisfies $\int_{\Omega} f(x) dx = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The "slicing" method

Lemma

Let $\Omega \subset \mathbb{R}^n$ be a convex domain with diameter d. Assume that f is a smooth function that satisfies $\int_{\Omega} f(x) dx = 0$. Then for any $\delta > 0$, there are disjoint convex domains Ω_i , i = 1, ..., k such that

$$\bar{\Omega} = \bigcup_{i=1}^k \bar{\Omega}_i, \qquad \int_{\Omega_i} f(x) \,\mathrm{d}x = 0, \quad i = 1, ..., k,$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The "slicing" method

Lemma

Let $\Omega \subset \mathbb{R}^n$ be a convex domain with diameter d. Assume that f is a smooth function that satisfies $\int_{\Omega} f(x) dx = 0$. Then for any $\delta > 0$, there are disjoint convex domains Ω_i , i = 1, ..., k such that

$$ar{\Omega} = igcup_{i=1}^k ar{\Omega}_i, \qquad \int_{\Omega_i} f(x) \, \mathrm{d}x = 0, \quad i = 1, ..., k,$$

and for each Ω_i , there is a rectangular coordinate system such that

$$\Omega_i \subset \{(x_1,...,x_n) \in \mathbb{R}^n : 0 \le x_1 \le d_i \text{ and } |x_j| \le \delta, j = 2,...,n\}.$$

The "slicing" method - proof for planar case (n = 2)Given $\alpha \in [0, 2\pi]$, there is a unique hyperplane H_{α} with normal

$$\mathbf{v}_{\alpha} = (\cos(\alpha), \sin(\alpha)),$$

such that H_{α} divides Ω into two convex sets Ω'_{α} and Ω''_{α} with equal area (v_{α} points in the direction of Ω'_{α}).

The "slicing" method - proof for planar case (n = 2)Given $\alpha \in [0, 2\pi]$, there is a unique hyperplane H_{α} with normal

$$v_{\alpha} = (\cos(\alpha), \sin(\alpha)),$$

such that H_{α} divides Ω into two convex sets Ω'_{α} and Ω''_{α} with equal area (v_{α} points in the direction of Ω'_{α}). Define

$$I(\alpha) := \int_{\Omega'_{\alpha}} f(x) \, \mathrm{d}x.$$

Since $I(\alpha) = -I(\alpha + \pi)$, by continuity there exists an α_0 such that

$$I(\alpha_0)=0.$$

The "slicing" method - proof for planar case (n = 2)Given $\alpha \in [0, 2\pi]$, there is a unique hyperplane H_{α} with normal

$$v_{\alpha} = (\cos(\alpha), \sin(\alpha)),$$

such that H_{α} divides Ω into two convex sets Ω'_{α} and Ω''_{α} with equal area (v_{α} points in the direction of Ω'_{α}). Define

$$I(\alpha) := \int_{\Omega'_{\alpha}} f(x) \,\mathrm{d}x.$$

Since $I(\alpha) = -I(\alpha + \pi)$, by continuity there exists an α_0 such that

$$I(\alpha_0)=0.$$

We then have that $|\Omega'| = |\Omega''| = \frac{1}{2}|\Omega|$ and

$$\int_{\Omega'} f(x) \, \mathrm{d}x = \int_{\Omega''} f(x) \, \mathrm{d}x = 0 \text{ at } \alpha_0.$$

The "slicing" method - proof for planar case (n = 2)

Applying this recursively, we divide Ω into a collection of convex subsets Ω_i , for $1 \le i \le k$, such that $|\Omega_i|$ is arbitrarily small.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The "slicing" method - proof for planar case (n = 2)

Applying this recursively, we divide Ω into a collection of convex subsets Ω_i , for $1 \le i \le k$, such that $|\Omega_i|$ is arbitrarily small.

Then each Ω_i is contained between two parallel hyperplanes of distance at most 2δ .

$$\frac{h^2}{2} \leq \frac{h(d_i)}{2} \leq |\Omega_i| \implies h \leq (2|\Omega_i|)^{\frac{1}{2}} < \delta.$$

The "slicing" method - proof for planar case (n = 2)

Applying this recursively, we divide Ω into a collection of convex subsets Ω_i , for $1 \le i \le k$, such that $|\Omega_i|$ is arbitrarily small.

Then each Ω_i is contained between two parallel hyperplanes of distance at most 2δ .

$$\frac{h^2}{2} \leq \frac{h(d_i)}{2} \leq |\Omega_i| \implies h \leq (2|\Omega_i|)^{\frac{1}{2}} < \delta.$$

We rotate each Ω_i so that the hyperplanes have normal v = (0, 1), and the desired decomposition is obtained. \Box

(日) (同) (三) (三) (三) (○) (○)

The two-dimensional case

Theorem

Let $\Omega \subset \mathbb{R}^2$ be a convex domain with diameter d. Then for all smooth f satisfying $\iint_{\Omega} f(x_1, x_2) dx_1 dx_2 = 0$,

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The two-dimensional case

Theorem

Let $\Omega \subset \mathbb{R}^2$ be a convex domain with diameter d. Then for all smooth f satisfying $\iint_{\Omega} f(x_1, x_2) dx_1 dx_2 = 0$,

$$\left(\iint_{\Omega} |f(x_1, x_2)|^2 \,\mathrm{d}x_1 \,\mathrm{d}x_2\right)^{1/2} \leq \frac{d}{\pi} \left(\iint_{\Omega} |\nabla f(x_1, x_2)|^2 \,\mathrm{d}x_1 \,\mathrm{d}x_2\right)^{1/2}$$

.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Assume that Ω has been partitioned into a collection of convex subsets Ω_i as described in the previous lemma.

Assume that Ω has been partitioned into a collection of convex subsets Ω_i as described in the previous lemma.

Define $R(x_1)$ as the function that describes the length of the intersection of the vertical line passing through x_1 and Ω_i .

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Assume that Ω has been partitioned into a collection of convex subsets Ω_i as described in the previous lemma.

Define $R(x_1)$ as the function that describes the length of the intersection of the vertical line passing through x_1 and Ω_i .

By convexity, $R(x_1) = \rho^{n-1}(x_1)$, where $\rho(x_1)$ is a concave function.

Assume that Ω has been partitioned into a collection of convex subsets Ω_i as described in the previous lemma.

Define $R(x_1)$ as the function that describes the length of the intersection of the vertical line passing through x_1 and Ω_i .

By convexity, $R(x_1) = \rho^{n-1}(x_1)$, where $\rho(x_1)$ is a concave function.

$$\iint_{\Omega_i} |f(x_1, x_2)|^2 \, \mathrm{d} x_1 \, \mathrm{d} x_2 = \int_{[0, d_i]} |f(x_1, 0)|^2 R(x_1) \, \mathrm{d} x_1 + E_1(\delta, i)$$

Assume that Ω has been partitioned into a collection of convex subsets Ω_i as described in the previous lemma.

Define $R(x_1)$ as the function that describes the length of the intersection of the vertical line passing through x_1 and Ω_i .

By convexity, $R(x_1) = \rho^{n-1}(x_1)$, where $\rho(x_1)$ is a concave function.

$$\iint_{\Omega_i} |f(x_1, x_2)|^2 \, \mathrm{d} x_1 \, \mathrm{d} x_2 = \int_{[0, d_i]} |f(x_1, 0)|^2 R(x_1) \, \mathrm{d} x_1 + E_1(\delta, i)$$

$$0 = \iint_{\Omega_i} f(x_1, x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \int_{[0, d_i]} f(x_1, 0) R(x_1) \, \mathrm{d}x_1 + E_2(\delta, i)$$

Assume that Ω has been partitioned into a collection of convex subsets Ω_i as described in the previous lemma.

Define $R(x_1)$ as the function that describes the length of the intersection of the vertical line passing through x_1 and Ω_i .

By convexity, $R(x_1) = \rho^{n-1}(x_1)$, where $\rho(x_1)$ is a concave function.

$$\iint_{\Omega_i} |f(x_1, x_2)|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \int_{[0, d_i]} |f(x_1, 0)|^2 R(x_1) \, \mathrm{d}x_1 + E_1(\delta, i)$$

$$0 = \iint_{\Omega_i} f(x_1, x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \int_{[0, d_i]} f(x_1, 0) R(x_1) \, \mathrm{d}x_1 + E_2(\delta, i)$$

$$\iint_{\Omega_i} \left| \frac{\partial f}{\partial x_1}(x_1, x_2) \right|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \int_{[0, d_i]} \left| \frac{\partial f}{\partial x_1}(x_1, 0) \right|^2 R(x_1) \, \mathrm{d}x_1 + E_3(\delta, i)$$

Some estimates

$$\left| \iint_{\Omega_i} |f(x_1, x_2)|^2 \, \mathrm{d} x_1 \, \mathrm{d} x_2 - \int_{[0, d_i]} |f(x_1, 0)|^2 R(x_1) \, \mathrm{d} x_1 \right| \leq c_1 |\Omega_i| \delta$$

$$\left| \iint_{\Omega_i} f(x_1, x_2) \, \mathrm{d} x_1 \, \mathrm{d} x_2 - \int_{[0, d_i]} f(x_1, 0) R(x_1) \, \mathrm{d} x_1 \right| \leq c_2 |\Omega_i| \delta$$

・ロト・日本・モート モー うへぐ

$$\left| \iint_{\Omega_i} \left| \frac{\partial f}{\partial x_1}(x_1, x_2) \right|^2 \, \mathrm{d} x_1 \, \mathrm{d} x_2 - \int_{[0, d_i]} \left| \frac{\partial f}{\partial x_1}(x_1, 0) \right|^2 R(x_1) \, \mathrm{d} x_1 \right| \leq c_3 |\Omega_i| \delta$$

The constants c_1 , c_2 , and c_3 depend only on f, not on the partition.

Let

$$\begin{split} g(x_1) &:= f(x_1, 0) - \frac{1}{|\Omega_i|} \int_{[0, d_i]} f(x_1, 0) R(x_1) \, \mathrm{d} x_1 \\ & \implies \int_{[0, d_i]} g(x_1) R(x_1) \, \mathrm{d} x_1 = 0 \end{split}$$

<□ > < @ > < E > < E > E のQ @

Let

$$g(x_1) := f(x_1, 0) - \frac{1}{|\Omega_i|} \int_{[0, d_i]} f(x_1, 0) R(x_1) \, \mathrm{d}x_1$$
$$\implies \int_{[0, d_i]} g(x_1) R(x_1) \, \mathrm{d}x_1 = 0$$

and by the weighted one-dimensional lemma,

$$\int_{[0,d_i]} |g(x_1)|^2 R(x_1) \, \mathrm{d} x_1 \leq \frac{d_i^2}{\pi^2} \int_{[0,d_i]} |\frac{\partial f}{\partial x_1}(x_1,0)|^2 R(x_1) \, \mathrm{d} x_1.$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Let

$$\begin{split} g(x_1) &:= f(x_1, 0) - \frac{1}{|\Omega_i|} \int_{[0, d_i]} f(x_1, 0) R(x_1) \, \mathrm{d}x_1 \\ & \Longrightarrow \int_{[0, d_i]} g(x_1) R(x_1) \, \mathrm{d}x_1 = 0 \end{split}$$

and by the weighted one-dimensional lemma,

$$\int_{[0,d_i]} |g(x_1)|^2 R(x_1) \, \mathrm{d} x_1 \leq \frac{d_i^2}{\pi^2} \int_{[0,d_i]} |\frac{\partial f}{\partial x_1}(x_1,0)|^2 R(x_1) \, \mathrm{d} x_1.$$

By triangle inequality,

$$\int_{[0,d_i]} |f(x_1,0)R(x_1)|^2 \, \mathrm{d}x_1 \leq \frac{d_i^2}{\pi^2} \int_{[0,d_i]} |\frac{\partial f}{\partial x_1}(x_1,0)|^2 R(x_1) \, \mathrm{d}x_1 + c_2 f_{\Omega_i} |\Omega_i| \delta.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Remark

$$\iint_{\Omega_i} |f(x_1, x_2)|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \int_{[0, d_i]} |f(x_1, 0)|^2 R(x_1) \, \mathrm{d}x_1 + c_1 |\Omega_i| \delta_i$$

Remark

$$\iint_{\Omega_i} |f(x_1, x_2)|^2 \, \mathrm{d} x_1 \, \mathrm{d} x_2 = \int_{[0, d_i]} |f(x_1, 0)|^2 R(x_1) \, \mathrm{d} x_1 + c_1 |\Omega_i| \delta$$

 and

$$\iint_{\Omega_i} \left| \frac{\partial f}{\partial x_1}(x_1, x_2) \right|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \int_{[0, d_i]} \left| \frac{\partial f}{\partial x_1}(x_1, 0) \right|^2 R(x_1) \, \mathrm{d}x_1 + c_3 |\Omega_i| \delta$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Remark

$$\iint_{\Omega_i} |f(x_1, x_2)|^2 \, \mathrm{d} x_1 \, \mathrm{d} x_2 = \int_{[0, d_i]} |f(x_1, 0)|^2 R(x_1) \, \mathrm{d} x_1 + c_1 |\Omega_i| \delta$$

and

$$\iint_{\Omega_i} \left| \frac{\partial f}{\partial x_1}(x_1, x_2) \right|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \int_{[0, d_i]} \left| \frac{\partial f}{\partial x_1}(x_1, 0) \right|^2 R(x_1) \, \mathrm{d}x_1 + c_3 |\Omega_i| \delta$$

So by repeated application of the triangle inequality, we obtain

$$\begin{split} \iint_{\Omega_i} |f(x_1, x_2)|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 &\leq \frac{d_i^2}{\pi^2} \iint_{\Omega_i} |\nabla f(x_1, x_2)|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 \\ &+ |\Omega_i| \delta(c_1 + c_2 f_{\Omega_i} + c_3 \frac{d_i^2}{\pi^2}) \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We've now obtained the following inequality over Ω_i :

$$\begin{split} \iint_{\Omega_i} |f(x_1, x_2)|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 &\leq \frac{d_i^2}{\pi^2} \iint_{\Omega_i} |\nabla f(x_1, x_2)|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 \\ &+ |\Omega_i| \delta(c_1 + c_2 f_{\Omega_i} + c_3 \frac{d_i^2}{\pi^2}) \end{split}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

We've now obtained the following inequality over Ω_i :

$$\begin{split} \iint_{\Omega_i} |f(x_1, x_2)|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 &\leq \frac{d_i^2}{\pi^2} \iint_{\Omega_i} |\nabla f(x_1, x_2)|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 \\ &+ |\Omega_i| \delta(c_1 + c_2 f_{\Omega_i} + c_3 \frac{d_i^2}{\pi^2}) \end{split}$$

Take the sum of all inequalities on each Ω_i , $1 \le i \le k$ to obtain:

$$\iint_{\Omega} |f(x_1, x_2)|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 \leq \frac{d^2}{\pi^2} \iint_{\Omega} |\nabla f(x_1, x_2)|^2 \, \mathrm{d}x_1 \, \mathrm{d}x_2 + |\Omega| \delta C$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

A comment about $\Omega \subset \mathbb{R}^n$ for n = 2 or $n \ge 3$

In the original paper by Payne and Weinberger, it was thought that R(x) is concave, but actually $R(x) = \rho^{n-1}(x)$, with $\rho(x)$ concave.

A comment about $\Omega \subset \mathbb{R}^n$ for n = 2 or $n \ge 3$

In the original paper by Payne and Weinberger, it was thought that R(x) is concave, but actually $R(x) = \rho^{n-1}(x)$, with $\rho(x)$ concave.

This was fixed by M. Bebendorf in 2003, who showed that the original idea works with $R(x) = \rho^m(x)$ for $m \in \mathbb{N}$.

A note on the constant

For bounded convex domains with diameter d, the Poincaré constant is at most $\frac{d}{\pi}$ for L^2 spaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For bounded convex domains with diameter d, the Poincaré constant is at most $\frac{d}{\pi}$ for L^2 spaces.

In certain cases, this constant can be explicitly found. A unit right isosceles triangle, for example, has the constant $\frac{1}{\pi}$ while the diameter is actually $2^{\frac{1}{2}}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Thank you for your attention!

<□ > < @ > < E > < E > E のQ @