The optimal constant of the Poincaré Inequality on convex domains

James K. Alcala ${ }^{1}$
Department of Mathematics
University of California, Riverside

Mathematical Physics and Dynamical Systems Workshop May $19^{\text {th }}, 2017$

[^0]
Outline

1. The classical idea
2. The one-dimensional case
3. The "slicing" method
4. The two-dimensional case
5. Some comments

The classical idea

Theorem (L. E. Payne \& H. F. Weinberger '60)
Let $\Omega \subset \mathbb{R}^{n}$ be a bounded convex domain with diameter d for $n \geq 1$. Then

$$
\left(\int_{\Omega}\left|u(x)-u_{\Omega}\right|^{2} \mathrm{~d} x\right)^{1 / 2} \leq \frac{d}{\pi}\left(\int_{\Omega}|\nabla u(x)|^{2} \mathrm{~d} x\right)^{1 / 2},
$$

where $u \in C^{\infty}(\Omega)$, and $u_{\Omega}=\frac{1}{|\Omega|} \int_{\Omega} u$.
Observe that $\int_{\Omega}\left(u(x)-u_{\Omega}\right) \mathrm{d} x=0$.

The weighted one-dimensional case

Lemma

Let ρ be a non-negative concave function on the interval $[0, L]$, and let $m \in \mathbb{N}$. Then for any smooth function g satisfying

$$
\int_{[0, L]} g(t) \rho^{m}(t) \mathrm{d} t=0
$$

The weighted one-dimensional case

Lemma

Let ρ be a non-negative concave function on the interval $[0, L]$, and let $m \in \mathbb{N}$. Then for any smooth function g satisfying

$$
\int_{[0, L]} g(t) \rho^{m}(t) \mathrm{d} t=0
$$

we have that

$$
\left(\int_{[0, L]}|g(t)|^{2} \rho^{m}(t) \mathrm{d} t\right)^{\frac{1}{2}} \leq \frac{L}{\pi}\left(\int_{[0, L]}\left|g^{\prime}(t)\right|^{2} \rho^{m}(t) \mathrm{d} t\right)^{\frac{1}{2}}
$$

The weighted one-dimensional case

Lemma

Let ρ be a non-negative concave function on the interval $[0, L]$, and let $m \in \mathbb{N}$. Then for any smooth function g satisfying

$$
\int_{[0, L]} g(t) \rho^{m}(t) \mathrm{d} t=0
$$

we have that

$$
\left(\int_{[0, L]}|g(t)|^{2} \rho^{m}(t) \mathrm{d} t\right)^{\frac{1}{2}} \leq \frac{L}{\pi}\left(\int_{[0, L]}\left|g^{\prime}(t)\right|^{2} \rho^{m}(t) \mathrm{d} t\right)^{\frac{1}{2}}
$$

Additionally, the constant $\frac{1}{\pi}$ is optimal.

The "slicing" method

Lemma
Let $\Omega \subset \mathbb{R}^{n}$ be a convex domain with diameter d. Assume that f is a smooth function that satisfies $\int_{\Omega} f(x) \mathrm{d} x=0$.

The "slicing" method

Lemma

Let $\Omega \subset \mathbb{R}^{n}$ be a convex domain with diameter d. Assume that f is a smooth function that satisfies $\int_{\Omega} f(x) \mathrm{d} x=0$. Then for any $\delta>0$, there are disjoint convex domains $\Omega_{i}, i=1, \ldots, k$ such that

$$
\bar{\Omega}=\bigcup_{i=1}^{k} \bar{\Omega}_{i}, \quad \int_{\Omega_{i}} f(x) \mathrm{d} x=0, \quad i=1, \ldots, k
$$

The "slicing" method

Lemma

Let $\Omega \subset \mathbb{R}^{n}$ be a convex domain with diameter d. Assume that f is a smooth function that satisfies $\int_{\Omega} f(x) \mathrm{d} x=0$. Then for any $\delta>0$, there are disjoint convex domains $\Omega_{i}, i=1, \ldots, k$ such that

$$
\bar{\Omega}=\bigcup_{i=1}^{k} \bar{\Omega}_{i}, \quad \int_{\Omega_{i}} f(x) \mathrm{d} x=0, \quad i=1, \ldots, k,
$$

and for each Ω_{i}, there is a rectangular coordinate system such that

$$
\Omega_{i} \subset\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: 0 \leq x_{1} \leq d_{i} \text { and }\left|x_{j}\right| \leq \delta, j=2, \ldots, n\right\}
$$

The "slicing" method - proof for planar case $(n=2)$
Given $\alpha \in[0,2 \pi]$, there is a unique hyperplane H_{α} with normal

$$
v_{\alpha}=(\cos (\alpha), \sin (\alpha))
$$

such that H_{α} divides Ω into two convex sets Ω_{α}^{\prime} and $\Omega_{\alpha}^{\prime \prime}$ with equal area (v_{α} points in the direction of Ω_{α}^{\prime}).

The "slicing" method - proof for planar case $(n=2)$
Given $\alpha \in[0,2 \pi]$, there is a unique hyperplane H_{α} with normal

$$
v_{\alpha}=(\cos (\alpha), \sin (\alpha))
$$

such that H_{α} divides Ω into two convex sets Ω_{α}^{\prime} and $\Omega_{\alpha}^{\prime \prime}$ with equal area (v_{α} points in the direction of Ω_{α}^{\prime}).
Define

$$
I(\alpha):=\int_{\Omega_{\alpha}^{\prime}} f(x) \mathrm{d} x
$$

Since $I(\alpha)=-I(\alpha+\pi)$, by continuity there exists an α_{0} such that

$$
I\left(\alpha_{0}\right)=0
$$

The "slicing" method - proof for planar case $(n=2)$
Given $\alpha \in[0,2 \pi]$, there is a unique hyperplane H_{α} with normal

$$
v_{\alpha}=(\cos (\alpha), \sin (\alpha))
$$

such that H_{α} divides Ω into two convex sets Ω_{α}^{\prime} and $\Omega_{\alpha}^{\prime \prime}$ with equal area (v_{α} points in the direction of Ω_{α}^{\prime}). Define

$$
I(\alpha):=\int_{\Omega_{\alpha}^{\prime}} f(x) \mathrm{d} x
$$

Since $I(\alpha)=-I(\alpha+\pi)$, by continuity there exists an α_{0} such that

$$
I\left(\alpha_{0}\right)=0
$$

We then have that $\left|\Omega^{\prime}\right|=\left|\Omega^{\prime \prime}\right|=\frac{1}{2}|\Omega|$ and

$$
\int_{\Omega^{\prime}} f(x) \mathrm{d} x=\int_{\Omega^{\prime \prime}} f(x) \mathrm{d} x=0 \text { at } \alpha_{0}
$$

The "slicing" method - proof for planar case $(n=2)$

Applying this recursively, we divide Ω into a collection of convex subsets Ω_{i}, for $1 \leq i \leq k$, such that $\left|\Omega_{i}\right|$ is arbitrarily small.

The "slicing" method - proof for planar case $(n=2)$

Applying this recursively, we divide Ω into a collection of convex subsets Ω_{i}, for $1 \leq i \leq k$, such that $\left|\Omega_{i}\right|$ is arbitrarily small.

Then each Ω_{i} is contained between two parallel hyperplanes of distance at most 2δ.

$$
\frac{h^{2}}{2} \leq \frac{h\left(d_{i}\right)}{2} \leq\left|\Omega_{i}\right| \Longrightarrow h \leq\left(2\left|\Omega_{i}\right|\right)^{\frac{1}{2}}<\delta
$$

The "slicing" method - proof for planar case $(n=2)$

Applying this recursively, we divide Ω into a collection of convex subsets Ω_{i}, for $1 \leq i \leq k$, such that $\left|\Omega_{i}\right|$ is arbitrarily small.

Then each Ω_{i} is contained between two parallel hyperplanes of distance at most 2δ.

$$
\frac{h^{2}}{2} \leq \frac{h\left(d_{i}\right)}{2} \leq\left|\Omega_{i}\right| \Longrightarrow h \leq\left(2\left|\Omega_{i}\right|\right)^{\frac{1}{2}}<\delta .
$$

We rotate each Ω_{i} so that the hyperplanes have normal $v=(0,1)$, and the desired decomposition is obtained. \square

The two-dimensional case

[^1]
The two-dimensional case

Theorem

Let $\Omega \subset \mathbb{R}^{2}$ be a convex domain with diameter d. Then for all smooth f satisfying $\iint_{\Omega} f\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}=0$,
$\left(\iint_{\Omega}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}\right)^{1 / 2} \leq \frac{d}{\pi}\left(\iint_{\Omega}\left|\nabla f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}\right)^{1 / 2}$.

The two-dimensional case - proof

The two-dimensional case - proof

Assume that Ω has been partitioned into a collection of convex subsets Ω_{i} as described in the previous lemma.

The two-dimensional case - proof

Assume that Ω has been partitioned into a collection of convex subsets Ω_{i} as described in the previous lemma.

Define $R\left(x_{1}\right)$ as the function that describes the length of the intersection of the vertical line passing through x_{1} and Ω_{i}.

The two-dimensional case - proof

Assume that Ω has been partitioned into a collection of convex subsets Ω_{i} as described in the previous lemma.

Define $R\left(x_{1}\right)$ as the function that describes the length of the intersection of the vertical line passing through x_{1} and Ω_{i}.

By convexity, $R\left(x_{1}\right)=\rho^{n-1}\left(x_{1}\right)$, where $\rho\left(x_{1}\right)$ is a concave function.

The two-dimensional case - proof

Assume that Ω has been partitioned into a collection of convex subsets Ω_{i} as described in the previous lemma.

Define $R\left(x_{1}\right)$ as the function that describes the length of the intersection of the vertical line passing through x_{1} and Ω_{i}.

By convexity, $R\left(x_{1}\right)=\rho^{n-1}\left(x_{1}\right)$, where $\rho\left(x_{1}\right)$ is a concave function.

$$
\iint_{\Omega_{i}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]}\left|f\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1}+E_{1}(\delta, i)
$$

The two-dimensional case - proof

Assume that Ω has been partitioned into a collection of convex subsets Ω_{i} as described in the previous lemma.

Define $R\left(x_{1}\right)$ as the function that describes the length of the intersection of the vertical line passing through x_{1} and Ω_{i}.

By convexity, $R\left(x_{1}\right)=\rho^{n-1}\left(x_{1}\right)$, where $\rho\left(x_{1}\right)$ is a concave function.

$$
\begin{aligned}
& \iint_{\Omega_{i}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]}\left|f\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1}+E_{1}(\delta, i) \\
& 0=\iint_{\Omega_{i}} f\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]} f\left(x_{1}, 0\right) R\left(x_{1}\right) \mathrm{d} x_{1}+E_{2}(\delta, i)
\end{aligned}
$$

The two-dimensional case - proof

Assume that Ω has been partitioned into a collection of convex subsets Ω_{i} as described in the previous lemma.

Define $R\left(x_{1}\right)$ as the function that describes the length of the intersection of the vertical line passing through x_{1} and Ω_{i}.

By convexity, $R\left(x_{1}\right)=\rho^{n-1}\left(x_{1}\right)$, where $\rho\left(x_{1}\right)$ is a concave function.

$$
\begin{gathered}
\iint_{\Omega_{i}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]}\left|f\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1}+E_{1}(\delta, i) \\
0=\iint_{\Omega_{i}} f\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]} f\left(x_{1}, 0\right) R\left(x_{1}\right) \mathrm{d} x_{1}+E_{2}(\delta, i) \\
\iint_{\Omega_{i}}\left|\frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]}\left|\frac{\partial f}{\partial x_{1}}\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1}+E_{3}(\delta, i)
\end{gathered}
$$

The two-dimensional case - proof

Some estimates

$$
\begin{aligned}
\left.\left|\iint_{\Omega_{i}}\right| f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}-\int_{\left[0, d_{i}\right]}\left|f\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1} \mid & \leq c_{1}\left|\Omega_{i}\right| \delta \\
\left|\iint_{\Omega_{i}} f\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}-\int_{\left[0, d_{i}\right]} f\left(x_{1}, 0\right) R\left(x_{1}\right) \mathrm{d} x_{1}\right| & \leq c_{2}\left|\Omega_{i}\right| \delta \\
\left.\left.\left|\iint_{\Omega_{i}}\right| \frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}-\int_{\left[0, d_{i}\right]}\left|\frac{\partial f}{\partial x_{1}}\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1} \right\rvert\, & \leq c_{3}\left|\Omega_{i}\right| \delta
\end{aligned}
$$

The constants c_{1}, c_{2}, and c_{3} depend only on f, not on the partition.

The two-dimensional case - proof

The two-dimensional case - proof

Let

$$
\begin{aligned}
g\left(x_{1}\right):= & f\left(x_{1}, 0\right)-\frac{1}{\left|\Omega_{i}\right|} \int_{\left[0, d_{i}\right]} f\left(x_{1}, 0\right) R\left(x_{1}\right) \mathrm{d} x_{1} \\
& \Longrightarrow \int_{\left[0, d_{i}\right]} g\left(x_{1}\right) R\left(x_{1}\right) \mathrm{d} x_{1}=0
\end{aligned}
$$

The two-dimensional case - proof

Let

$$
\begin{aligned}
g\left(x_{1}\right):= & f\left(x_{1}, 0\right)-\frac{1}{\left|\Omega_{i}\right|} \int_{\left[0, d_{i}\right]} f\left(x_{1}, 0\right) R\left(x_{1}\right) \mathrm{d} x_{1} \\
& \Longrightarrow \int_{\left[0, d_{i}\right]} g\left(x_{1}\right) R\left(x_{1}\right) \mathrm{d} x_{1}=0
\end{aligned}
$$

and by the weighted one-dimensional lemma,

$$
\int_{\left[0, d_{i}\right]}\left|g\left(x_{1}\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1} \leq \frac{d_{i}^{2}}{\pi^{2}} \int_{\left[0, d_{i}\right]}\left|\frac{\partial f}{\partial x_{1}}\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1} .
$$

The two-dimensional case - proof

Let

$$
\begin{aligned}
g\left(x_{1}\right):= & f\left(x_{1}, 0\right)-\frac{1}{\left|\Omega_{i}\right|} \int_{\left[0, d_{i}\right]} f\left(x_{1}, 0\right) R\left(x_{1}\right) \mathrm{d} x_{1} \\
& \Longrightarrow \int_{\left[0, d_{i}\right]} g\left(x_{1}\right) R\left(x_{1}\right) \mathrm{d} x_{1}=0
\end{aligned}
$$

and by the weighted one-dimensional lemma,

$$
\int_{\left[0, d_{i}\right]}\left|g\left(x_{1}\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1} \leq \frac{d_{i}^{2}}{\pi^{2}} \int_{\left[0, d_{i}\right]}\left|\frac{\partial f}{\partial x_{1}}\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1} .
$$

By triangle inequality,
$\int_{\left[0, d_{i}\right]}\left|f\left(x_{1}, 0\right) R\left(x_{1}\right)\right|^{2} \mathrm{~d} x_{1} \leq \frac{d_{i}^{2}}{\pi^{2}} \int_{\left[0, d_{i}\right]}\left|\frac{\partial f}{\partial x_{1}}\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1}+c_{2} f_{\Omega_{i}}\left|\Omega_{i}\right| \delta$.

The two-dimensional case - proof

Remark

$$
\iint_{\Omega_{i}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]}\left|f\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1}+c_{1}\left|\Omega_{i}\right| \delta
$$

The two-dimensional case - proof

Remark

$$
\iint_{\Omega_{i}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]}\left|f\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1}+c_{1}\left|\Omega_{i}\right| \delta
$$

and
$\iint_{\Omega_{i}}\left|\frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]}\left|\frac{\partial f}{\partial x_{1}}\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1}+c_{3}\left|\Omega_{i}\right| \delta$

The two-dimensional case - proof

Remark

$$
\iint_{\Omega_{i}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]}\left|f\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1}+c_{1}\left|\Omega_{i}\right| \delta
$$

and

$$
\iint_{\Omega_{i}}\left|\frac{\partial f}{\partial x_{1}}\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}=\int_{\left[0, d_{i}\right]}\left|\frac{\partial f}{\partial x_{1}}\left(x_{1}, 0\right)\right|^{2} R\left(x_{1}\right) \mathrm{d} x_{1}+c_{3}\left|\Omega_{i}\right| \delta
$$

So by repeated application of the triangle inequality, we obtain

$$
\begin{gathered}
\iint_{\Omega_{i}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \leq \frac{d_{i}^{2}}{\pi^{2}} \iint_{\Omega_{i}}\left|\nabla f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
+\left|\Omega_{i}\right| \delta\left(c_{1}+c_{2} f_{\Omega_{i}}+c_{3} \frac{d_{i}^{2}}{\pi^{2}}\right)
\end{gathered}
$$

The two-dimensional case - proof

We've now obtained the following inequality over Ω_{i} :

$$
\begin{gathered}
\iint_{\Omega_{i}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \leq \frac{d_{i}^{2}}{\pi^{2}} \iint_{\Omega_{i}}\left|\nabla f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
+\left|\Omega_{i}\right| \delta\left(c_{1}+c_{2} f_{\Omega_{i}}+c_{3} \frac{d_{i}^{2}}{\pi^{2}}\right)
\end{gathered}
$$

The two-dimensional case - proof

We've now obtained the following inequality over Ω_{i} :

$$
\begin{gathered}
\iint_{\Omega_{i}}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \leq \frac{d_{i}^{2}}{\pi^{2}} \iint_{\Omega_{i}}\left|\nabla f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \\
+\left|\Omega_{i}\right| \delta\left(c_{1}+c_{2} f_{\Omega_{i}}+c_{3} \frac{d_{i}^{2}}{\pi^{2}}\right)
\end{gathered}
$$

Take the sum of all inequalities on each $\Omega_{i}, 1 \leq i \leq k$ to obtain:

$$
\iint_{\Omega}\left|f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2} \leq \frac{d^{2}}{\pi^{2}} \iint_{\Omega}\left|\nabla f\left(x_{1}, x_{2}\right)\right|^{2} \mathrm{~d} x_{1} \mathrm{~d} x_{2}+|\Omega| \delta C
$$

A comment about $\Omega \subset \mathbb{R}^{n}$ for $n=2$ or $n \geq 3$

In the original paper by Payne and Weinberger, it was thought that $R(x)$ is concave, but actually $R(x)=\rho^{n-1}(x)$, with $\rho(x)$ concave.

A comment about $\Omega \subset \mathbb{R}^{n}$ for $n=2$ or $n \geq 3$

In the original paper by Payne and Weinberger, it was thought that $R(x)$ is concave, but actually $R(x)=\rho^{n-1}(x)$, with $\rho(x)$ concave.

This was fixed by M. Bebendorf in 2003, who showed that the original idea works with $R(x)=\rho^{m}(x)$ for $m \in \mathbb{N}$.

A note on the constant

For bounded convex domains with diameter d, the Poincaré constant is at most $\frac{d}{\pi}$ for L^{2} spaces.

A note on the constant

For bounded convex domains with diameter d, the Poincaré constant is at most $\frac{d}{\pi}$ for L^{2} spaces.

In certain cases, this constant can be explicitly found. A unit right isosceles triangle, for example, has the constant $\frac{1}{\pi}$ while the diameter is actually $2^{\frac{1}{2}}$.

Thank you for your attention!

[^0]: ${ }^{1}$ Under guidance of Professor Fernando López-García

[^1]: Theorem
 Let $\Omega \subset \mathbb{R}^{2}$ be a convex domain with diameter d. Then for all smooth f satisfying $\iint_{\Omega} f\left(x_{1}, x_{2}\right) \mathrm{d} x_{1} \mathrm{~d} x_{2}=0$,

