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Abstract. The goal of this work is to show that the generalized Korn inequality that
replaces the symmetric part of the differential matrix in the classical Korn inequality
by its trace-free part is valid over John domains and weighted Sobolev spaces. The
weights considered are nonnegative powers of the distance to the boundary.

1. Introduction

Let Ω ⊂ Rn be a bounded domain and 1 < p < ∞. A well-known version of the
Korn inequality states that

inf
ε(w)=0

(∫
Ω

|Dv −Dw|p dx

)1/p

≤ C

(∫
Ω

|ε(v)|p dx

)1/p

,(1.1)

for any arbitrary vector field v in the Sobolev space W 1,p(Ω,Rn), where n ≥ 2. The
constant C depends only on Ω and p, and ε(v) denotes the symmetric part of the
differential matrix Dv, namely,

ε(v) :=
Dv +DvT

2
.

This inequality is a fundamental result in the analysis of linear elasticity equations
where the vector field v represents the displacement of an elastic body and ε(v) the
linear part of the strain tensor.

The validity of this type of inequalities depend on the geometry of the domain.
For example, inequality (1.1) fails on certain domains with cusps (see [1, 2]). The
largest known class of domains where this inequality is satisfied is the class of John
domains. Examples of John domains are convex domains, Lipschitz domains and the
Kock snowflake, a domain with fractal boundary. We refer the reader to [3, 4, 5]
where some Korn-type inequalities are studied in this class of domains. The geometric
John condition was introduced by Fritz John in [6] and named after him by Martio
and Sarvas in [7]. It was recently shown in [8] that certain Korn type inequalities
and the John condition are equivalent if the domain satisfies the separation property.
This property was introduced by Buckley and Koskela in [9] to exhibit a wide class of
domains where the Sobolev-Poincaré inequality and the John condition are equivalent.
Examples of domains with the separation property are simply connected plane domains.
Reference [9] has also been used to prove the equivalence of the John condition with
other inequalities in Sobolev spaces such as the one known as the inf-sup condition [3]
and an improved version of the fractional Sobolev-Poincaré inequality [10].
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In this work we deal with a generalized version of (1.1) known simply as the gen-
eralized Korn inequality or the conformal Korn inequality, where the linearized strain
vector ε(v) is replaced by its trace-free part l(v) defined by:

l(v) := ε(v)− div v

n
I,

where I in Rn×n is the identity matrix. More specifically, the main goal of these notes
is proving that the inequality

inf
l(w)=0

(∫
Ω

|Dv −Dw|p dx

)1/p

≤ C

(∫
Ω

|l(v)|p dx

)1/p

,(1.2)

is valid for any vector field v in W 1,p(Ω,Rn), where Ω ⊂ Rn is an arbitrary bounded
John domain and n ≥ 3.

Different types of the Korn inequality involving the trace-free part of the symmetric
gradient have been recently studied for their interest as a mathematical result and for
their applications, for instance, to general relativity and Cosserat elasticity. We refer
the reader to the following articles and references therein for more details [11, 12, 13, 14].
However, we are especially interested in two Korn-type inequalities published in [15]
and [16] where no assumptions on the values of the vector fields over the boundary
of the domain are considered. In the first article, Yu. G. Reshetnyak showed the
following generalized Korn inequality over star-shaped domains with respect to a ball
in Rn, where n ≥ 3 and 1 < p <∞:

(1.3) ‖v − Π(v)‖W 1,p(Ω) ≤ C‖l(v)‖Lp(Ω),

valid for all v ∈ W 1,p(Ω,Rn). The operator Π : W 1,p(Ω,Rn)→ Σ is a projection (i.e. a
continuous linear operator such that Π(v) = v for all v ∈ Σ), where Σ is the kernel of
l and it is endowed with the topology of Lp(Ω,Rn). This result was proved by using a
certain integral representation of the vector function v−Π(v) in terms of l(v) and then
the theory of singular integral operators. Let us recall that the class of star-shaped
domains with respect to a ball contains convex domains and it is strictly included in
the class of John domains. The study of this inequality was motivated by its connexion
with the stability of Liouville’s theorem.

The second Korn-type inequality of our interest was published in [16] and says

(1.4) ‖v‖W 1,2(Ω) ≤ C{‖(v)‖L2(Ω) + ‖l(v)‖L2(Ω)},

where v is an arbitrary vector field in W 1,2(Ω,Rn) and C depends only on Ω. In this
case, Ω is an arbitrary bounded Lipschitz domain in Rn, with n ≥ 3. This theorem
was proved in [16] by using the classical result known as Lions Lemma that claims that
any distribution in the space H−1(Ω) with gradient in H−1(Ω)n belongs to L2(Ω). A
generalized version of this result for distributions in H−2(Ω) is also required. It is shown
in [16] that inequality (1.4) fails on planar domains independently of the geometry of
the domain.

The main result of this work states that generalized Korn inequality (1.2) holds also
in weighted Sobolev spaces on John domains where the weights are nonnegative powers
of the distance to the boundary.
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Theorem 1.1. Let Ω ⊂ Rn be a bounded John domain with n ≥ 3, 1 < p < ∞ and
β ≥ 0. Then, there exists a constant C such that

inf
l(w)=0

(∫
Ω

|Dv −Dw|pρpβ dx

)1/p

≤ C

(∫
Ω

|l(v)|pρpβ dx

)1/p

(1.5)

for all vector field v from Ω to Rn in the Sobolev space W 1,p(Ω,Rn, ρpβ). The function
ρ(x) is the distance from x to the boundary of Ω.

As a Corollary of the main theorem, we prove that (1.3) and (1.4) are also valid on
bounded John domains.

Let us recall the definition of John domains. A bounded domain Ω ⊂ Rn, with
n ≥ 2, is called a John domain with parameter C > 1 if there exists a point x0 ∈ Ω
such that every y ∈ Ω has a rectifiable curve parameterized by arc length γ : [0, l]→ Ω
such that γ(0) = y, γ(l) = x0 and

dist(γ(t), ∂Ω) ≥ 1

C
t

for all t ∈ [0, l], where l is the length of γ.
Finally, notice that powers of the distance to the boundary are not in the Mucken-

houpt class (Ap class) for arbitrarily large exponents. Thus, approaches that rely on
the continuity of the Hardy-Littlewood maximal operator do not apply to the current
setting. Instead of the maximal operator we use a Hardy type operator T , which defi-
nition (4.1) depends on the geometry of the domain and it is continuous for this type
of weights. Moreover, if Ω is a bounded John domain it follows that T is pointwise
bounded by the Hardy-Littlewood maximal operator (after multiplying by a constant),
then it is also continuous for weights in the Muckenhoupt class. Since this paper is
based on a local-to-global argument, extending Theorem 1.1 to arbitrary Muckenhoupt
weights would require to prove first the result on cubes. For general knowledge, we
refer the reader to [17, 18] where necessary conditions on a compact set F and a real
number β are given such that the power distance dβ(x, F ) becomes a Muckenhoupt
weight.

2. Notation

Throughout the paper Ω ⊂ Rn denotes a bounded domain where n ≥ 3 and 1 <
p, q <∞, with 1

p
+ 1

q
= 1. Given η : Ω→ R a positive measurable function we denote

by Lp(Ω, η) the space of Lebesgue measurable functions u : Ω→ R equipped with the
norm:

‖u‖Lp(Ω,η) :=

(∫
Ω

|u(x)|pη(x) dx

)1/p

.

Analogously, we define the weighted Sobolev spaces W 1,p(Ω, η) as the space of weakly
differentiable functions u : Ω→ R with the norm:

‖u‖W 1,p(Ω,η) :=

(∫
Ω

|u(x)|pη(x) dx+
n∑
i=1

∫
Ω

∣∣∣∣∂u(x)

∂xi

∣∣∣∣p η(x) dx

)1/p

.

We extend this definition to functions from Ω to Rn×n, and from Ω to Rn, denoted by
Lp(Ω,Rn×n, η), and W 1,p(Ω,Rn, η) respectively.
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Given g̃ : Rn → Rn×n and 1 ≤ r ≤ ∞ we denote by ‖g̃‖r : Rn → R the following
function

‖g̃‖r(x) :=

( ∑
1≤i,j≤n

|g̃ij(x)|r
)1/r

if r 6=∞, and

‖g̃‖∞(x) := max
1≤i,j≤n

|g̃ij(x)|.

Notice that for any 1 ≤ r1, r2 ≤ ∞ there is a positive constant C = C(r1, r2) such that

1

C
‖g̃‖r1(x) ≤ ‖g̃‖r2(x) ≤ C‖g̃‖r1(x)

for all functions g̃ and x ∈ Ω.
Moreover, |g̃| : Rn → Rn×n is given by |g̃|ij(x) = |g̃ij(x)|. We say that the function

g̃ is integrable (similarly bounded) if each coordinate is integrable (bounded).

For g̃, f̃ : Rn → Rn×n we denote by g̃(x) : f̃(x) the product coordinate by coordinate

g̃(x) : f̃(x) :=
∑

1≤i,j≤n

g̃ij(x)f̃ij(x).

We say that x belongs to supp(g̃) iff g̃(x) has at least one coordinate different from
zero. We denote with tilde those functions with codomain in Rn×n.

Finally, a Whitney decomposition of Ω is a collection {Qt}t∈Γ of closed dyadic cubes
whose interiors are pairwise disjoint which satisfy

(1) Ω =
⋃
t∈ΓQt,

(2) diam(Qt) ≤ dist(Qt, ∂Ω) ≤ 4diam(Qt),
(3) 1

4
diam(Qs) ≤ diam(Qt) ≤ 4diam(Qs), if Qs ∩Qt 6= ∅.

Two different cubes Qs and Qt with Qs ∩ Qt 6= ∅ are called neighbors. Notice that
two neighbors may have an intersection with dimension less than n− 1. For instance,
they could be intersecting each other in a one-point set. We say that Qs and Qt are
(n− 1)-neighbors if Qs ∩ Qt is the n − 1 dimensional face of one of them. This kind
of covering exists for any proper open set in Rn (see [19] for details). Moreover, each
cube Qt has less than 12n neighbors. And, if we fix 0 < ε < 1

4
and define Q∗t as the

cube with the same center as Qt and side length (1 + ε) times the side length of Qt,
then Q∗t touches Q∗s if and only if Qt and Qs are neighbors.

Given a Whitney decomposition {Qt}t∈Γ of Ω we refer by an extended Whitney
decomposition of Ω to the collection of open cubes {Ωt}t∈Γ defined by

Ωt :=
9

8
Q◦t .

Observe that this collection of cubes satisfies that

χΩ(x) ≤
∑
t∈Γ

χΩt(x) ≤ 12nχΩ(x)

for all x ∈ Rn.
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3. Proof of the main result

This section is devoted to showing Theorem 1.1. The proof follows from a local-to-
global argument based on the validity of (1.5), with β = 0, on cubes and a certain
decomposition of functions stated in Lemma 3.4 which is proved in Section 4.

The following result is implied by the validity of (1.3) proved by Reshetnyak [15]
over star-shaped domains with respect to a ball.

Corollary 3.1. Let Q ⊂ Rn be an arbitrary cube with sides parallel to the axis, with
n ≥ 3, and 1 < p <∞. Then, there exists a positive constant C that depends only on
n and p such that

inf
l(w)=0

(∫
Q

|Dv −Dw|p dx

)1/p

≤ C

(∫
Q

|l(v)|p dx

)1/p

(3.1)

for all v ∈ W 1,p(Q,Rn).

Proof. Cubes are star-shaped domains with respect to a ball, thus from (1.3) we can
conclude that

inf
l(w)=0

‖Dv −Dw‖Lp(Q) ≤ ‖v − Π(v)‖W 1,p(Q) ≤ C‖l(v)‖Lp(Q),

where C depends on p, n and Q. It only remains to prove that there is a uniform
constant that makes (3.1) valid for any arbitrary cube with sides parallel to the axis.
Let Q0 be the cube (0, 1)n with constant CQ0 in the inequality (3.1). Hence, any other
cube with sides parallel to the axis can be obtained by a translation and dilation of
Q0. Now, the inequality only involves first order partial derivatives, thus by making a
change of variable, we can extend the validity of this Korn type inequality from Q0 to
any other cube in the statement of corollary with the same constant CQ0 . �

The kernel of the operator l, denoted by Σ in these notes, plays a central role in this
local-to-global argument. So, let us recall its characterization which is significantly
different if n = 2 or n ≥ 3. In the planar case, Σ is an infinite dimensional space
where w ∈ Σ iff w(x, y) = (w1(x, y), w2(x, y)) where w1 and w2 are the components of
an analytical function F (x + iy) := w1(x, y) + iw2(x, y). The fact that the kernel has
infinite dimension and the well-known Rellich-Kondrachov Theorem for Sobolev spaces
imply the failure of (1.4) for planar domains (see [16]). We have described the planar
case for general knowledge, however, in this article, we deal with n ≥ 3. In that case,

when n ≥ 3, the kernel of l has a finite dimension equal to (n+1)(n+2)
2

and a vector field
w ∈ Σ iff

w(x) = a+ A(x− y) + λ(x− y) +

{
〈b, x− y〉(x− y)− 1

2
|x− y|2b

}
,(3.2)

where A ∈ Rn×n is skew-symmetric, a, b ∈ Rn and λ ∈ R. The vector y ∈ Rn is
arbitrary but must be fixed to have uniqueness for this representation.

Now, we define the space V whose elements are the differential matrix of the vector
fields in Σ. Namely,

V := {ϕ̃ : Rn → Rn×n : ϕ̃(x) = A+ λI +
n∑
i=1

biHi(x− y)

with A skew-symmetric, λ ∈ R and bi ∈ R for all i}.
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The matrix I is the identity and, for 1 ≤ i ≤ n, Hi(x) is the functions with values in
Rn×n defined by

(3.3) (Hi)jk(z) =


zi if j = k
zj if j 6= k, k = i
−zk if j 6= k, j = i

0 otherwise

for 1 ≤ j, k ≤ n. In the particular case when n = 3, we have:

H1 =

 z1 −z2 −z3

z2 z1 0
z3 0 z1

 H2 =

 z2 z1 0
−z1 z2 −z3

0 z3 z2

 H3 =

 z3 0 z1

0 z3 z2

−z1 −z2 z3

 .

Observe that the definition of V does not depend on the vector y ∈ Rn. By taking a
different y we only obtain a different representation of the functions ϕ̃(x) in V . Thus,

let us denote by m := n(n−1)
2

+ 1 + n the dimension of V . Finally, to prove that ϕ̃
belongs to V iff ϕ̃ = Dw for some w ∈ Σ it is sufficient to show that the quadratic

part appearing between brackets in (3.2), denoted by r for simplicity, is
n∑
i=1

biHi(x−y).

Indeed,

∂rj
∂xk

=


n∑
i=1

bi(xi − yi) if j = k

bk(xj − yj)− bj(xk − yk) if j 6= k.

Thus,
(
∂rj
∂xk

)
jk

=
n∑
i=1

biHi(x− y) concluding that

V = D(Σ).

Now, we define the subspace W ⊂ Lq(Ω,Rn×n, ρ−qβ) by:

W := {g̃ ∈ Lq(Ω,Rn×n, ρ−qβ) :

∫
g̃ : ϕ̃ = 0 for all ϕ̃ ∈ V},

where the product “:” is the standard inner product for vectors understanding matrices
in Rn×n as vectors in Rn2

. Notice that ρpβ belongs to L1(Ω) thus

Lq(Ω,Rn×n, ρ−qβ) ⊂ L1(Ω,Rn×n).

Moreover, using that Ω is bounded it follows that V ⊂ L∞(Ω,Rn×n). Hence, W is
well-defined.

Lemma 3.2. The space Lq(Ω,Rn×n, ρ−qβ) can be written as W ⊕ ρpβV . Moreover, for

all F̃ = g̃ + ρpβψ̃ in W ⊕ ρpβV it follows that ‖g̃‖Lq(Ω,ρ−qβ) ≤ C1‖F̃‖Lq(Ω,ρ−qβ) where

C1 =

(
1 +

m∑
j=1

‖ψ̃j‖Lp(Ω,ρpβ)‖ψ̃j‖Lq(Ω,ρqβ)

)
.(3.4)

The collection {ψ̃j}1≤j≤m in the previous identity is an arbitrary orthonormal basis of
V with respect to the inner product

〈ψ̃, ϕ̃〉Ω =

∫
Ω

ψ̃(x) : ϕ̃(x) ρpβ(x) dx.
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Proof. Notice that ρpβψ̃, with ψ̃ ∈ V , belongs to Lq(Ω,Rn×n, ρ−qβ). Indeed,

‖ρpβψ̃‖q
Lq(Ω,ρ−qβ)

=

∫
Ω

‖ψ̃‖qqρpqβω−qβ ≤
(

sup
x∈Ω
‖ψ̃(x)‖qq

)∫
Ω

ρpβ(x) dx.

Thus, ρpβV is a subspace of Lq(Ω,Rn×n, ρ−qβ).
The representation follows naturally from the definition of W . Indeed, given F̃ in

the space Lq(Ω,Rn×n, ρ−qβ) we take

ψ̃F̃ (x) :=
m∑
j=1

αF̃ ,jψ̃j(x),(3.5)

where αF̃ ,j :=
∫

Ω
F̃ : ψ̃j for any 1 ≤ j ≤ m. Thus, F̃ = h̃F̃ + ρpβψ̃F̃ where ψ̃F̃ ∈ V and

h̃F̃ := F̃ − ρpβψ̃F̃ ∈ W . The uniqueness is a simple exercise of linear algebra. Now, to
obtain (3.4) notice that the coefficients αF̃ ,j verify

|αF̃ ,j| ≤ ‖F̃‖Lq(Ω,ρ−qβ)‖ψ̃j‖Lp(Ω,ρpβ),(3.6)

for all j. Thus, from (3.5) and (3.6) we have

‖h̃F̃‖Lq(Ω,ρ−qβ) ≤

(
1 +

m∑
j=1

‖ψ̃j‖Lp(Ω,ρpβ)‖ρpβψ̃j‖Lq(Ω,ρ−qβ)

)
‖F̃‖Lq(Ω,ρ−qβ)

=

(
1 +

m∑
j=1

‖ψ̃j‖Lp(Ω,ρpβ)‖ψ̃j‖Lq(Ω,ρqβ)

)
‖F̃‖Lq(Ω,ρ−qβ).

�

Given a decomposition of extended Whitney cubes {Ωt}t∈Γ of Ω, we define the sub-
space W0 ⊂ W by:

W0 := {g̃ ∈ W : supp(g̃) ∩ Ωt 6= ∅ only for a finite number of t ∈ Γ}.

Remark 3.3. The local-to-global argument used in this article is based on the possi-
bility of having a decomposition of the functions in W ⊂ Lq(Ω,Rn×n, ρ−qβ) as the sum
of a collection of functions with support in the extended Whitney cubes and satisfying
the additional properties detailed in Lemma 3.4. By using the subspace W0 instead of
W the sums in the decompositions are finite simplifying the proof of the main result.

Lemma 3.4. Let Ω ⊂ Rn be a bounded John domain and {Ωt}t∈Γ a decomposition of
extended Whitney cubes. Then, there exists a positive constant C0 such that for any
g̃ ∈ W0, there is a collection of functions {g̃t}t∈Γ with the following properties:

(1) g̃ =
∑

t∈Γ g̃t.
(2) supp(g̃t) ⊂ Ωt.
(3) g̃t ∈ W0, for all t ∈ Γ.

We call this collection of functions a V-decomposition of g̃ subordinate to {Ωt}t∈Γ.
In addition, it satisfies∑

t∈Γ

‖g̃t‖qLq(Ωt,ρ−qβ)
≤ Cq

0‖g̃‖
q
Lq(Ω,ρ−qβ)

.(3.7)

Moreover, g̃t 6≡ 0 only for a finite number of t ∈ Γ.
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Lemma 3.4, which is fundamental in these notes, is proved in the next section.
Now, we define the following subspace S of Lq(Ω,Rn×n, ρ−qβ) by

(3.8) S :=W0 ⊕ ρpβV .

Lemma 3.5. The subspace S defined above is dense in Lq(Ω,Rn×n, ρ−qβ).

Proof. By Lemma 3.2, it is sufficient to show that W0 is dense in W with respect to
the norm in Lq(Ω,Rn×n, ρ−qβ).

Let Q ⊂ Ω be a cube that intersects a finite collection of Ωt and {ν̃j}1≤j≤m an
orthogonal basis of the finite dimensional space V with respect to the inner product

〈ψ̃, ϕ̃〉Q =

∫
Q

ψ̃(x) : ϕ̃(x) ρpβ(x) dx.

Now, given h̃ ∈ W notice that
∫

Ω
h̃ : ν̃j = 0 for all j, for being ν̃j a function in V . Next,

given ε > 0, let Ωε ⊂ Ω be an open set that contains Q, intersects a finite number of
Ωt and

‖(1− χΩε)h̃‖Lq(Ω,ρ−qβ) < ε.

Thus, we define the function g̃ by

g̃(x) := χΩε(x)h̃(x) +
m∑
i=1

χQ(x)ρpβ(x)ν̃i(x)

∫
Ω\Ωε

h̃(y) : ν̃i(y) dy.

Notice first that the support of g̃ intersects a finite number of Ωt, and
∫

Ω
g̃ : ν̃j = 0 for

all j, thus g̃ belongs to W0. Moreover,

‖h̃− g̃‖Lq(Ω,ρ−qβ) ≤ ε+
m∑
i=1

∥∥∥∥χQ(x)ρpβ(x)ν̃i(x)

∫
Ω\Ωε

h̃(y) : ν̃i(y) dy

∥∥∥∥
Lq(Ω,ρ−qβ)

≤ ε+
m∑
i=1

(∫
Ω\Ωε
|h̃(y) : ν̃i(y)| dy

)
‖ν̃iρpβ‖Lq(Q,ρ−qβ)

≤ ε+
m∑
i=1

‖h̃‖Lq(Ω\Ωε,ρ−qβ)‖ν̃i‖Lp(Ω,ρpβ)‖ν̃iρpβ‖Lq(Q,ρ−qβ)

≤ ε

(
1 +

m∑
i=1

‖ν̃i‖Lp(Ω,ρpβ)‖ν̃iρpβ‖Lq(Q,ρ−qβ)

)
,

which proves that S is dense in Lq(Ω,Rn×n, ρ−qβ). �

We are ready to prove the main result of this article.

Proof of Theorem 1.1. Let v be an arbitrary vector field in W 1,p(Ω,Rn, ρpβ). Next, let
us take w in Σ, the kernel of l, such that∫

Ω

(Dv : ϕ̃) ρpβ =

∫
Ω

(Dw : ϕ̃) ρpβ

for all ϕ̃ ∈ V . Recall that the elements in V are the differential matrix of the vector
fields in (3.2), thus Dw is the orthogonal projection of Du onto V with respect to
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the inner product used above. Moreover, β ≥ 0 and Ω is bounded, then w belongs to
W 1,p(Ω,Rn, ρpβ). Hence, by taking u := v −w, it is sufficient to prove(∫

Ω

|Du|pρpβ dx

)1/p

≤ C

(∫
Ω

|l(u)|pρpβ dx

)1/p

,

for all u ∈ W 1,p(Ω,Rn, ρpβ) which satisfy∫
Ω

(Du : ϕ̃) ρpβ = 0

for all ϕ̃ ∈ V . For simplicity, we preferred to write the generalized version of the Korn
inequality in our main theorem by using the infimum over l(w) = 0, however, it is also
valid for vector fields verifying the condition stated above, which is also very standard
in this kind of inequalities.

Now, using that the space S defined in (3.8) is dense in Lq(Ω,Rn×n, ρ−qβ), it is
enough to show that there is a constant C such that∫

Du : (g̃ + ρpβψ̃) ≤ C

(∫
Ω

|l(u)|pρpβ dx

)1/p

,

for any arbitrary function g̃ + ρpβψ̃ in S, with ‖g̃ + ρpβψ̃‖Lq(Ω,ρ−qβ) ≤ 1. Thus, given a

function g̃ + ρpβψ̃ with norm less than one, let us take a V-decomposition {g̃t}t∈Γ of g̃
(we refer to Lemma 3.4). Thus,∫

Ω

Du : (g̃ + ρpβψ̃) =

∫
Ω

Du : g̃

=

∫
Ωt

Du :
∑
t∈Γ

g̃t

=
∑
t∈Γ

∫
Ωt

Du : g̃t = (1).

Notice that in the last identity we used the finiteness of the sum stated in Lemma 3.4.
Now, g̃t satisfies that

∫
Ωt
Dw : g̃t = 0 for all w ∈ Σ. Thus, from Hölder inequality,

property (2) in Whitney decomposition’s definition and (3.1) we obtain

(1) ≤
∑
t∈Γ

inf
l(w)=0

‖Du−Dw‖Lp(Ωt,ρpβ)‖g̃t‖Lq(Ωt,ρ−qβ)

≤
∑
t∈Γ

C(diam(Ωt))
β inf
l(w)=0

‖Du−Dw‖Lp(Ωt)‖g̃t‖Lq(Ωt,ρ−qβ)

≤ C
∑
t∈Γ

(diam(Qt))
β‖l(u)‖Lp(Ωt)‖g̃t‖Lq(Ωt,ρ−qβ)

≤ C
∑
t∈Γ

‖l(u)‖Lp(Ωt,ρpβ)‖g̃t‖Lq(Ωt,ρ−qβ) = (2).

Next, we use Hölder inequality for the sum depending on t to obtain

(2) ≤ C

(∑
t∈Γ

∫
Ωt

|l(u)|pρpβ
)1/p(∑

t∈Γ

‖g̃t‖qLq(Ωt,ρ−qβ)

)1/q

= (3).
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Using that each cube Ωt intersects no more than 12n cubes in {Ωs}s∈Γ, and Lemma 3.4
we conclude

(3) ≤ C C0 ‖l(u)‖Lp(Ω,ρpβ)‖g̃‖Lq(Ω,ρ−qβ) ≤ C C0C1‖l(u)‖Lp(Ω,ρpβ),

where C is independent of Ω, C0 is the estimate in (3.7) and C1 is the constant in
(3.4). �

In the following two corollaries we show that the Korn type inequalities considered
in [15, 16] are valid on bounded John domains.

Corollary 3.6. Let Ω ⊂ Rn be a bounded John domain, with n ≥ 3, 1 < p < ∞ and
Π : W 1,p(Ω,Rn)→ Σ a projection, where Σ is endowed with the topology of Lp(Ω,Rn).
Then, there is a constant C such that

‖v − Π(v)‖W 1,p(Ω) ≤ C‖l(v)‖Lp(Ω),

for all v ∈ W 1,p(Ω,Rn).

Proof. Let w0 ∈ Σ be such that

‖Dv −Dw0‖Lp(Ω) ≤ 2 inf
l(w)=0

‖Dv −Dw‖Lp(Ω)

and
∫

Ω
vi −w0i = 0 for all 1 ≤ i ≤ n. Then, by using that Π is a projection and the

norms ‖ · ‖W 1,p(Ω) or ‖ · ‖Lp(Ω) are equivalent over Σ for being Σ a finite dimensional
space, we have

‖v − Π(v)‖W 1,p(Ω) ≤ ‖v −w0‖W 1,p(Ω) + ‖Π(v)− Π(w0)‖W 1,p(Ω)

≤ C{‖v −w0‖W 1,p(Ω) + ‖Π(v)− Π(w0)‖Lp(Ω)}
≤ C‖v −w0‖W 1,p(Ω).

Finally, by using Poincaré inequality on Ω (see for example [20]) and Theorem 1.1 with
β = 0 we conclude

‖v − Π(v)‖W 1,p(Ω) ≤ C‖Dv −Dw0‖Lp(Ω)

≤ C inf
l(w)=0

‖Dv −Dw‖Lp(Ω)

≤ C‖l(v)‖Lp(Ω).

�

Corollary 3.7. Let Ω ⊂ Rn be a bounded John domain, with n ≥ 3. Then, there is a
constant C such that

(3.9) ‖v‖W 1,2(Ω) ≤ C{‖v‖L2(Ω) + ‖l(v)‖L2(Ω)},

for all v ∈ W 1,2(Ω,Rn).

Proof. Let Q be a cube included in Ω and ΠQ : W 1,2(Q,Rn) → Σ a projection. The
norms ‖ · ‖L2(Q) and ‖ · ‖L2(Ω) are equivalent over Σ, thus ΠQ is also a projection from
W 1,2(Ω,Rn) to Σ. Hence, using Corollary 3.6 over Ω and the validity of (3.9) over the
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cube Q, we show for any v in W 1,2(Ω,Rn) that

‖v‖W 1,2(Ω) ≤ ‖v − ΠQ(v)‖W 1,2(Ω) + ‖ΠQ(v)‖W 1,2(Ω)

≤ C{‖l(v)‖L2(Ω) + ‖ΠQ(v)‖L2(Q)}
≤ C{‖l(v)‖L2(Ω) + ‖v‖W 1,2(Q)}
≤ C{‖l(v)‖L2(Ω) + ‖v‖L2(Q) + ‖l(v)‖L2(Q)}
≤ C{‖v‖L2(Q) + ‖l(v)‖L2(Ω)}

concluding the proof. �

To finalize this section we show an example that proves that the generalized Korn
inequality (1.5) might fail if Ω is not a John domain. Thus, let us consider the case
p = 2, β = 0 and the cuspidal domain Ω ⊂ R3 given by

Ω := {(x1, x2, x3) ∈ R3 : 0 < x1, x2 < 1 and 0 < x3 < xγ2},

with γ > 1. Let us assume by contradiction that (1.5) holds on Ω, thus, following the
ideas in the previous two corollaries, we can conclude that there is a constant C such
that

‖Dv‖L2(Ω) ≤ C{‖v‖L2(Q) + ‖l(v)‖L2(Ω)},(3.10)

for all v ∈ W 1,2(Ω,R3), where Q is a fixed cube in Ω. Now, let us consider the vector
field

v(x1, x2, x3) := (0, −(s+ 1)x3x
s
2, x

s+1
2 ).

By a straightforward calculation it can be seen that if s satisfies that

max

{
−(γ + 1)

2
− (γ − 1),−(γ + 1)

2
− 1

}
< s < −(γ + 1)

2

then the left hand side of (3.10) is infinite while the right one is finite following in a
contradiction.

This kind of counterexamples has been studied in [1] to show that the Korn inequality

‖Dv‖L2(Ω) ≤ C{‖v‖L2(Ω) + ‖ε(v)‖L2(Ω)},(3.11)

fails on certain cuspidal domains of the style of Ω. The fact that this counterexample
also works for the generalized version of Korn can also be concluded by observing that

‖l(v)‖2
L2(Ω) = ‖ε(v)‖2

L2(Ω) −
1

n
‖div v‖2

L2(Ω) ≤ ‖ε(v)‖2
L2(Ω)

which implies that (3.10) fails when (3.11) does.

Remark 3.8. Notice that the counterexample described above is not sufficient to
conclude that the validity of the weighted generalized Korn inequality (1.5) implies
that the domain is John. The equivalence between the Korn inequality (in the second
case) and John’s condition is studied in [8, 21], however, the equivalence with the
generalized Korn inequality considered in the main result has not been proved yet.
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4. V-decomposition of functions

The V-decomposition of functions introduced in Lemma 3.4 is constructed by using
an argument based on a certain partial order on the Whitney cubes {Qt}t∈Γ.

Let us denote by G = (V,E) a graph with vertices V and edges E. Graphs in these
notes do not have neither multiple edges nor loops and the number of vertices in V
is countable. Moreover, each vertex is of finite degree, i.e. only a finite number of
vertices emanate from each vertex. A rooted tree (or simply a tree) is a connected
graph G = (V,E) in which any two vertices are connected by exactly one simple path,
and a root is simply a distinguished vertex a ∈ V . Moreover, if G = (V,E) is a rooted
tree, it is possible to define a partial order “�” in V as follows: s � t if and only if
the unique path connecting t with the root a passes through s. The height or level of
any t ∈ V is the number of vertices in {s ∈ V : s � t with s 6= t}. The parent of a
vertex t ∈ V is the vertex s satisfying that s � t and its height is one unit smaller
than the height of t. We denote the parent of t by tp. It can be seen that each t ∈ V
different from the root has a unique parent, but several elements in V could have the
same parent. Note that two vertices are connected by an edge (adjacent vertices) if
one is the parent of the other.

Now, if Ω ⊂ Rn is a bounded domain and {Qt}t∈Γ a Whitney decomposition, we
define the connected graph

GΓ = (Γ, EΓ)

where the set of vertices is the set of subindexes Γ and two arbitrary s, t in Γ are
connected by an edge iff Qs and Qt are (n− 1)- neighbors.

Definition 4.1. A tree structure of Γ is given by a collection of edges E ⊂ EΓ and a
distinguished vertex a ∈ Γ such that the subgraph G = (Γ, E) of GΓ is a rooted tree.

There are different tree structures that can be added to Γ. For example, we can
define one such that the path that connects each vertex t with the root a has minimal
length. This kind of paths are not unique thus the tree structure must be defined
inductively, level by level, by choosing a path with minimal length. This example was
considered in [22] where the tree structure added to Γ is related to the quasi-hyperbolic
distance in Ω. Specifically, the quasi-hyperbolic distance between Qt and Qa in Ω is
comparable to the length of the path that connects t with a in Γ, see [23] for details.

In the following picture, we sketch another example that shows some cubes of a
Whitney decomposition of a circle and how a tree structure looks like.

Definition 4.2. Given a Whitney decomposition {Qt}t∈Γ of a domain Ω ⊂ Rn and a
tree structure of Γ, we take a collection of open pairwise disjoint cubes {Bt}t6=a with
sides parallel to the axis such that Bt ⊆ Ωt ∩Ωtp and |Ωt| ≤ Cn|Bt| for all t ∈ Γ, where
{Ωt}t∈Γ are extended Whitney cubes associated to {Qt}t∈Γ. This collection of cubes
exists by following the properties for Whitney cubes described in Section 2. Thus, using
the tree structure of Γ, we define the Hardy type operator T for functions in L1(Ω) by:

Tg(x) :=
∑
a6=t∈Γ

χt(x)

|Wt|

∫
Wt

|g|,(4.1)

where χt(x) is the characteristic function of Bt, for all t 6= a, and Wt =
⋃
s�t

Ωs.
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Figure 1. Some Whitney cubes Qt of a circle and a tree structure

We refer to Wt by the shadow of Ωt. This is a fairly known name and it follows the
assumption that light travels from Ωa to the different cubes Ωt along the unique path
that connects them. This geometric interpretation was taken from [24], page 81, in
the context of quasi-hyperbolic geodesics and chains of Whitney cubes with minimal
number of cubes.

The following lemma, shown in the companion article [5], describes the geometry of
John domains in terms of Whitney decompositions and trees. The articles [25] and [26]
were fundamental in the proof of this lemma.

Lemma 4.3. Given a bounded John domain Ω and a Whitney decomposition {Qt}t∈Γ,
there exists a constant K > 1 and a tree structure of Γ, with root “a”, that satisfies

Qs ⊆ KQt,(4.2)

for any s, t ∈ Γ with s � t. In other words, the shadow of Qt is contained in KQt.

From now on Ω ⊂ Rn is a bounded John domain, {Ωt}t∈Γ is the collection of extended
Whitney cubes defined in Section 2 and Γ has a tree structure with the geometric
property introduced in Lemma 4.3. The following lemma is proved in [5].

Lemma 4.4. Let Ω ⊂ Rn be a bounded John domain, β ≥ 0 and 1 < q < ∞. Then,
the operator T defined in (4.1) is continuous from Lq(Ω, ρ−qβ) to itself, where ρ is the
distance to the boundary of Ω. Moreover, its norm is bounded by

‖T‖L→L ≤ CKβ,

where L denotes Lq(Ω, ρ−qβ). The constant C in the previous inequality is independent
of Ω and K is the constant introduced in (4.2).

Now, we are ready to construct the V-decomposition.

Lemma 4.5. Let Ω ⊂ Rn be a bounded John domain and {Ωt}t∈Γ a collection of
extended Whitney cubes. Given g̃ ∈ L1(Ω,Rn×n) such that

∫
Ω
g̃ : ϕ̃ = 0, for all ϕ̃ ∈ V,

and supp(g̃) ∩ Ωs 6= ∅ only for a finite number of s ∈ Γ, there exists a collection of
functions {g̃t}t∈Γ in L1(Ω,Rn×n) with the following properties:
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(1) g̃ =
∑

t∈Γ g̃t.
(2) supp(g̃t) ⊂ Ωt.
(3)

∫
Ωt
g̃t : ϕ̃ = 0, for all ϕ̃ ∈ V .

Moreover, let t ∈ Γ. If x ∈ Bs, where s = t or sp = t, we have the following pointwise
estimate

‖g̃t‖∞(x) ≤ ‖g̃‖∞(x) + CnK
n+1T‖g̃‖1(x),(4.3)

where K is the geometric constant introduced in (4.2) and Cn is a constant that depends
only on n. Otherwise, if x 6∈

⋃
s∈Γ Bs or x ∈ Bs, where s 6= t and sp 6= t, then

‖g̃t‖∞(x) ≤ ‖g̃‖∞(x).(4.4)

Finally, g̃t ≡ 0 for all t ∈ Γ \ Γg̃, where Γg̃ is the subtree of Γ with a finite number of
vertices given by

Γg̃ := {s ∈ Γ : there is k � s with supp(g̃) ∩ Ωk 6= ∅}.

Proof. Let us define a base of the vector space V . For the constant skew-symmetric
matrices we consider

(Eij)i′j′ =

 1 if (i′, j′) = (i, j)
−1 if (i′, j′) = (j, i)

0 otherwise

where 1 ≤ i < j ≤ n. It can be seen that the dimension of V equals n0 + n, where

n0 := n(n−1)
2

+ 1. Let us take the following basis {A1, · · · , An0 , H1(x), · · · , Hn(x)} of V ,

where the first n(n−1)
2

elements are the matrices with constant coefficients Eij, following
an arbitrary order, and An0 = I is the identity matrix. The matrices Hi(x) have been
previously defined in (3.3).

Now, let {φt}t∈Γ be a partition of the unity subordinate to {Ωt}t∈Γ. Namely, a
collection of smooth functions such that

∑
t∈Γ φt = 1, 0 ≤ φt ≤ 1 and supp(φt) ⊂ Ωt.

Thus, g̃ can be cut-off into g̃ =
∑

t∈Γ f̃t by taking f̃t(x) = φ(x)g̃(x). Note that f̃t ≡ 0
except for a finite number of t ∈ Γ. This decomposition satisfies (1) and (2) in the
statement of the lemma but not necessarily (3). Thus, we make some modifications
to obtain the orthogonality with respect to V . We construct the decomposition in two
steps. We deal first with the orthogonality with respect to the matrices with constant
coefficients {A1, · · · , An0} and later with respect to {H1(x), · · · , Hn(x)}.

First step: The decomposition in this first step is denoted with the upper index (0).
Thus, we define the functions Ai,s(x) as a sort of normalization of Ai with respect to
a certain inner product over Bs:

Ai,s(x) :=
χs(x)Ai

2|Bs|
if 1 ≤ i ≤ n0 − 1

An0,s(x) :=
χs(x)An0

n|Bs|
=
χs(x)I

n|Bs|
,

where χs(x) is the characteristic function of Bs. Indeed, notice that
∫
Ai,s(x) : Aj dx =

δi,j for all s ∈ Γ \ {a} and 1 ≤ i, j ≤ n0, where δi,j is the Kronecker delta.
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Thus, we define the collection of functions {g̃(0)
t }t∈Γ from Ω to Rn×n by

g̃
(0)
t (x) := f̃t(x) +

∑
s: sp=t

h̃(0)
s (x)

− h̃(0)
t (x),(4.5)

where

h̃(0)
s (x) :=

n0∑
i=1

(∫
Ws

Ai :
∑
k�s

f̃k(y) dy

)
Ai,s(x).(4.6)

The sum in (4.5) is indexed over every s ∈ Γ such that t is the parent of s. In the
particular case when t is the root of Γ, (4.5) means

g̃(0)
a (x) = f̃a(x) +

∑
s: sp=a

h̃(0)
s (x).

Notice that the functions h̃
(0)
s in (4.6) are well-defined because of the integrability of

g̃. Indeed, ∣∣∣∣∣
∫
Ws

Ai :
∑
k�s

f̃k(y) dy

∣∣∣∣∣ ≤ ‖Ai‖∞
∫
Ws

‖
∑
k�s

f̃k‖1(y) dy

≤
∫
Ws

‖g̃‖1(y) dy.

See definitions of ‖g̃‖r(y), for 1 ≤ r ≤ ∞, in Section 2. Moreover, it can be easily

observed that f̃s, h̃
(0)
s and g̃

(0)
s are identically zero for all s ∈ Γ \ Γg̃. For this reason

the sums indexed over subsets of Γ, for instance k � s, that appear in the first step
are finite. The finiteness of these sums is also verified in the second step.

We know that

supp(h̃(0)
s ) ⊂ Bs

and the coefficients of h̃
(0)
s (x) are estimated in the following way:

‖h̃(0)
s ‖∞(x) ≤ 1

2|Bs|χs(x)

∫
Ws

‖g̃‖1(y) dy = |Ws|
2|Bs|χs(x)T‖g̃‖1(x)(4.7)

for all x ∈ Ω. Thus, using (4.2), if x ∈ Bs where s = t or sp = t then

‖g̃(0)
t ‖∞(x) ≤ ‖g̃‖∞(x) + |Ws|

2|Bs|T‖g̃‖1(x)

≤ ‖g̃‖∞(x) +Kn T‖g̃‖1(x).
(4.8)

Otherwise, if x 6∈
⋃
s∈ΓBs or x ∈ Bs with s 6= t and sp 6= t then

‖g̃(0)
t ‖∞(x) ≤ ‖g̃‖∞(x).

Let us continue by showing that g̃(x) =
∑

t∈Γ g̃
(0)
t (x) for all x. Given x ∈ Ω, let

suppose that x /∈
⋃
Bt. Then g̃

(0)
t (x) = g̃t(x) for all t ∈ Γ, then∑

t∈Γ

g̃
(0)
t (x) =

∑
t∈Γ

g̃t(x) = g̃(x).
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Otherwise, if x belongs to Bk0 for k0 ∈ Γ it follows that g̃
(0)
t (x) = g̃t(x) for all t 6= k0,

t 6= k0p (k0p is the parent of k0). Moreover, by using that the cubes Bs are pairwise
disjoint we have

g̃
(0)
k0

(x) = g̃k0(x)− h̃(0)
k0

(x)

g̃
(0)
k0p

(x) = g̃k0p(x) + h̃
(0)
k0

(x).

Then,
∑

t∈Γ g̃
(0)
t (x) = g̃(x) for all x.

Next, let us prove (2) in the statement of the lemma. The parent of each s in the

sum in (4.5) is t, then Bs ⊆ Ωs ∩ Ωt. Thus, supp(g̃
(0)
t ) ⊆ Ωt.

Now, let us show property (3), which refers to the orthogonality of g̃
(0)
t with respect

to the matrices A1, · · · , An0 for all t ∈ Γ. Observe that k � t if and only if k � s, with
sp = t, or k = t. Thus, given 1 ≤ j ≤ n0∫

h̃
(0)
t (x) : Aj dx =

∫
Aj :

∑
k�t

f̃k(y) dy

=

∫
Aj : f̃t(y) dy +

∑
s: sp=t

∫
Aj :

∑
k�s

f̃k(y) dy

=

∫
Aj : f̃t(y) dy +

∑
s: sp=t

∫
h̃(0)
s (x) : Aj dx.

Then,
∫
g̃

(0)
t (x) : Aj dx = 0, for all t 6= a.

Finally, ∫
g̃(0)
a (x) : Aj dx =

∫
f̃a(x) : Aj dx+

∑
s: sp=a

∫
Aj :

∑
k�s

f̃k(y) dy

=

∫
Aj :

∑
k�a

f̃k(y) dy

=

∫
Aj : g̃(x) dx = 0.

Second step: In this step the decomposition is denoted with the upper index (1).

Now, we repeat the process used in the first step replacing the collection {f̃t}t∈Γ by

{g̃(0)
t }t∈Γ and the matrices A1, · · · , An0 by H1(x), · · · , Hn(x).
Given a cube Bs in Definition 4.2, with s ∈ Γ \ {a}, and 1 ≤ i ≤ n we define

θ̃i,s(x) :=
Hi(x− cs)χs(x)∫

Bs
Hi(z − cs) : Hi(z − cs) dz

,

where cs is the center of the cube Bs. Using the symmetries of the cubes Bs which have
sides parallel to the axis, it follows that

∫
θ̃s,i(x) : Hj(x) dx = δi,j for all s ∈ Γ \ {a}

and 1 ≤ i, j ≤ n. Moreover, notice that
∫
θ̃s,i(x) : Aj(x) dx = 0 for all 1 ≤ i ≤ n and

1 ≤ j ≤ n0. This property is basic to preserve the orthogonality obtained in the first
step.
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We define the decomposition of g in the following way:

g̃t(x) := g̃
(0)
t (x) +

∑
s: sp=t

h̃(1)
s (x)

− h̃(1)
t (x),(4.9)

where

h̃(1)
s (x) :=

n∑
i=1

(∫
Ws

Hi(y) :
∑
k�s

g̃
(0)
k (y) dy

)
θ̃s,i(x).(4.10)

In the particular case when t = a, (4.9) means

g̃a(x) := g̃(0)
a (x) +

∑
s: sp=a

h̃(1)
s (x).

As before, g̃
(0)
s and h̃

(1)
s are identically zero if s ∈ Γ\Γg̃ implying that g̃s is identically

zero if s ∈ Γ \ Γg̃.

In order to prove (4.4), notice that supp(h̃
(0)
s ) ⊆ Bs and supp(h̃

(1)
s ) ⊆ Bs. Thus, from

(4.9) and (4.5), it follows that g̃t(x) = f̃t(x) for all x 6∈
⋃
s∈ΓBs or x ∈ Bs with s 6= t

and sp 6= t. Then, (4.4) is proved.
Estimate (4.3) requires more work. Let us start by showing a pointwise estimate of

‖h̃(1)
s ‖1(x) by the Hardy type operator T on ‖g̃‖1(x). First, notice that

‖θ̃s,i‖∞(x) ≤ 6

ln+1
s

=
6

ls|Bs|
,

where ls is the side length of the cube Bs. Next, using the orthogonality of the collection

{g̃(0)
k } with respect to A1, · · · , An0 , we can conclude that∫

Ws

Hi(y) :
∑
k�s

g̃
(0)
k (y) dy =

∫
Ws

Hi(y − cs) :
∑
k�s

g̃
(0)
k (y) dy.

Thus, by replacing this new integral in definition (4.10) and using that ‖Hi‖∞(y−cs) ≤
diam(Ws) for all y ∈ Ws, we have

‖h̃(1)
s ‖∞(x) ≤

n∑
i=1

‖θ̃s,i‖∞(x)

∫
Ws

|Hi(y − cs)| : |
∑
k�s

g̃
(0)
k (y)| dy

≤
n∑
i=1

6
χs(x)

ls|Bs|

∫
Ws

‖Hi‖∞(y − cs)‖
∑
k�s

g̃
(0)
k ‖1(y) dy

≤
n∑
i=1

6
diam(Ws)

ls

χs(x)

|Bs|

∫
Ws

‖
∑
k�s

g̃
(0)
k ‖1(y) dy

= 6n
diam(Ws)

ls

χs(x)

|Bs|

∫
Ws

‖
∑
k�s

g̃
(0)
k ‖1(y) dy = (1)
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Now, it can be seen by using (4.5) and certain telescopic cancelations of the functions

h̃
(0)
k′ that

∑
k�s

g̃
(0)
k =

∑
k�s

f̃k +

 ∑
k′: k′p=k

h̃
(0)
k′

− h̃(0)
k

 =

(∑
k�s

f̃k

)
− h̃(0)

s .

Thus, from (4.7) it follows

(1) = 6n
diam(Ws)

ls

χs(x)

|Bs|

∫
Ws

‖
∑
k�s

f̃k − h̃(0)
s ‖1(y) dy

≤ 6n
diam(Ws)

ls

χs(x)

|Bs|

∫
Ws

‖
∑
k�s

f̃k‖1(y) + ‖h̃(0)
s ‖1(y) dy

≤ 6n
diam(Ws)

ls

χs(x)

|Bs|

∫
Ws

‖g̃‖1(y) +
n2

2|Bs|
χs(y)

(∫
Ws

‖g̃‖1(x) dx

)
dy

= 6n

(
1 +

n2

2

)
diam(Ws)

ls

|Ws|
|Bs|

χs(x)

|Ws|

∫
Ws

‖g̃(y)‖1 dy

= Cn
diam(Ws)

ls

|Ws|
|Bs|

T‖g̃‖1(x).

Hence, using (4.2),

‖h̃(1)
s ‖∞(x) ≤ CnK

n+1T‖g̃‖1(x).(4.11)

Finally, we have already mentioned that the functions h̃
(1)
s and h̃

(1)
t defined in (4.9) are

supported, respectively, in the pairwise disjoint sets Bs and Bt. Thus, combining (4.8)
and (4.11), we have that for any x ∈ Bs, where s = t or sp = t,

‖g̃t‖∞(x) ≤ ‖g̃(0)‖∞(x) + ‖h̃(1)
s ‖∞(x)

≤ ‖g̃‖∞(x) +Kn T‖g̃‖1(x) + CnK
n+1T‖g̃‖1(x),

proving (4.3).
Properties (1), (2), and (3) in the statement of this lemma follows by using the

construction of the partition. Indeed, the first two properties follow by replacing g̃t by

g̃
(0)
t and g̃

(0)
t by g̃

(1)
t in the first step.

The third property follows from the facts that
∫
h̃

(1)
s : Ai = 0 for all s ∈ Γ and

1 ≤ i ≤ n0, so we do not modify the orthogonality obtained in the previous step, and∫
Hj(x) : h̃(1)

s (x) dx =

∫
Hj(x) :

∑
k�s

g̃
(0)
k (x) dx.

The rest of the proof follows by mimicking the first step. �

Proof of Lemma 3.4. As β ≥ 0 and Ω is bounded, Lq(Ω,Rn×n, ρ−qβ) ⊂ L1(Ω,Rn×n).
Thus, having just proved Lemma 4.5 we only need to show inequality (3.7). Hence,
from (4.3) and (4.4), and the continuity of the operator T stated in Lemma 4.4, we
have
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∑
t∈Γ

‖g̃t‖qLq(Ωt,ρ−qβ)
=
∑
t∈Γ

∫
Ωt

‖g̃t‖qq(x)ρ−qβ(x) dx

= CKq(n+1)
∑
t∈Γ

∫
Ωt

(
‖g̃‖qq(x) + (T‖g̃‖1(x))q

)
ρ−qβ(x) dx

= CKq(n+1)
(
‖g̃‖q

Lq(Ω,ρ−qβ)
+ ‖T‖g̃‖1‖qLq(Ω,ρ−qβ)

)
= CKq(n+1+β)‖g̃‖q

Lq(Ω,ρ−qβ)

where C is independent of Ω. �
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[23] R. Hurri-Syrjänen, An improved Poincaré inequality, Proc. Amer. Math. Soc. 120 (1994),
213–222.
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