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Abstract
In this paper, we study certain inequalities and a related result for weighted Sobolev spaces
on Hölder- domains, where the weights are powers of the distance to the boundary. We
obtain results regarding the divergence equation’s solvability, and the improved Poincaré,
the fractional Poincaré, and the Korn inequalities. The proofs are based on a local-to-global
argument that involves a kind of atomic decomposition of functions and the validity of a
weighted discrete Hardy-type inequality on trees. The novelty of our approach lies in the use
of this weighted discrete Hardy inequality and a sufficient condition that allows us to study
the weights of our interest. As a consequence, the assumptions on the weight exponents that
appear in our results are weaker than those in the literature.

Keywords Discrete Hardy inequality Decomposition of functions Weights Trees
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1 Introduction

Let be a certain partition of a bounded domain . Given 1 with
vanishing mean value, we decompose it into the sum of a collection of functions ,
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where each is supported on and has vanishing mean value. This kind of decomposition
was applied by Bogovskii in [5] using a finite partition to extend the solvability of the
divergence equation from star-shaped domains with respect to a ball to Lipschitz domains.
In the articles [8] and [12], the authors used a similar decomposition where the partition
of the domain is countable. In the case where the partition is not finite, it is required to
have an upper bound of the sum of the norms of by the norm of the function .
In [8], the decomposition is developed for John domains, and the estimation of the norms
is based on the continuity of the Hardy-Littlewood maximal operator. In [12], the authors
considered more general domains and the decomposition is based on the validity of a certain
Poincaré-type inequality. This decomposition can be used for extending to general domains
several results that are known to hold on simpler ones, e.g.: the solvability of the divergence
equation, and the inequalities Poincaré, improved Poincaré, fractional Poincaré and Korn.
The decomposition presented here is based on the one developed in [23] where a continuous
Hardy-type inequality is applied for proving the estimation for the norms. Moreover, in [23]
the partition of the domain is indexed over a set with tree structure, which is strongly
related to the geometry of the domain. Other references where variations of these techniques
are used are: [9, 13, 19, 24, 25].

Also, a similar decomposition on cuspidal domains is used in [3, 7] for proving weighted
Korn inequalities and the solvability of the divergence equation in weighted Sobolev spaces.
In those papers, thanks to the geometry of the domain, the partition is indexed over (in
other words, it is formed by a chain of subdomains). The discrete weighted Hardy-type
inequality [22, inequality (1.102), page 56] is used for proving the estimate of the norms.

In this work, we are interested in having a better understanding of the weights that make
these inequalities valid. We apply a discrete approach, similar to the one used in [3, 7], i.e.:
our partition of the domain allows us to regard the weights as essentially constant over each
sub-domain and a discrete Hardy-type inequality is used for estimating a weighted norm of
the sum of in terms of another weighted norm of . On the other hand, we recover the
tree structure introduced in [23], which allows the method to be applied to a larger class of
domains. Hence, we need a discrete weighted Hardy-type inequality, similar to [22, inequal-
ity (1.102)], but for sequences indexed over trees. For this inequality to hold, necessary and
sufficient conditions on the weights can be derived from the continuous case treated in [16].
However, as we shall discuss below, these conditions are very hard to check for our exam-
ples. Hence, we prove a sufficient condition which is somehow a natural extension of the
classical condition for sequences and is much easier to verify.

The paper is organized as follows: Section 2 introduces the weighted discrete Hardy-
type inequality that is applied later, and provides two conditions on the weights that imply
its validity. In Section 3, we present our decomposition of functions with vanishing mean
value on arbitrary bounded domains. We also show how the Hardy-type inequality stated in
the previous section can be used to obtain an upper bound of the norms of the functions pro-
posed in the decomposition. In Section 4, we study the decomposition of functions defined
in Section 3 on bounded Hölder domains. In Section 5, we prove several interesting results
that are obtained as a consequence of the decomposition. In particular, we prove the solv-
ability of the divergence equation and the improved Poincaré, the fractional Poincaré and
the Korn inequalities. All these results are stated on weighted Sobolev spaces on bounded
Hölder domains, where the weights are powers of the distance to the boundary. In all cases,
the conditions imposed on the exponents of the weights are less restrictive than the ones
in the literature. In Appendix A, we derive from [16] a necessary and sufficient condition
for the validity of the weighted discrete Hardy-type inequality treated in this work. This
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condition is included in the manuscript for general knowledge, but it is not used in our
applications.

2 AWeighted Discrete Hardy Inequality on Trees

In this section, we study a certain weighted Hardy-type inequality on trees, and give two
conditions for its validity. The first condition is sufficient and necessary and it follows from
[16] (see Theorem 1). The second condition is sufficient, and it may also be necessary, but
we have not proven it. We are especially interested in this second one because its verification
in our examples is easier than the first one.

Throughout the paper 1 , with 1 1 1, unless otherwise stated.
A tree is a graph , where is the set of vertices and the set of edges, satisfying

that it is connected and has no cycles. A tree is said to be rooted if one vertex is designed
as root. In a rooted tree , it is possible to define a partial order “ ” in as follows:

if and only if the unique path connecting to the root passes through . The parent
of a vertex is the vertex connected to by an edge on the path to the root. It can be seen that
each different from the root has a unique parent, but several elements (children) on

could have the same parent. We assume that each vertex has a finite number of children.
Note that two vertices are connected by an edge (adjacent vertices) if one is the parent of
the other one. We say that a set of indices has a tree structure if there is a set of edges
such that is a rooted tree.

Trees can be regarded as continuous or as discrete. In a continuous tree, the edges are
segments on the plane, and one can define functions taking values over them, whereas the
set of vertices has vanishing measure. On the other hand, on discrete trees, the edges are
just links between the vertices that define a partial order. In this case, sequences indexed on
the vertices can be defined. There is a natural one-to-one map between the edges and the
subset of vertices . It is given by the association of the edge with the vertex
. This map implies an association between the continuous and discrete versions of a given
tree. Therefore, we define:

.

We will work with discrete trees which are derived from a continuous setting, so is the
natural environment for stating our Hardy-type inequality. It is important to notice, however,
that the same results that we present here on can be easily extended to .

Given a rooted tree , we consider collections of real values indexed over , named in
this work as -sequences. We define the space of collections such
that:

1

.

We also define the path from the root to :

and the shadow of :

.
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Given positive -sequences (i.e. weights) and , we introduce
the inequality:

1

1

1

1

(2.1)

for every such that 1 .
Notice that the following dual version to (2.1) is equivalent.

Lemma 1 Inequality (2.1) holds if and only if
1 1

(2.2)

is satisfied, for every such that . Moreover, the optimal constants
for both inequalities are equal to each other.

Proof The best constant for (2.1) can be characterized by duality as:

sup
1

sup
1 1

1

sup
1 1

sup
1

1 .

Now, taking 1 and 1, we obtain the dual characterization of the optimal
constant in (2.2):

sup
1

sup
1

.

The goal of this section is to establish sufficient conditions for (2.1) that can be tested on
our examples.

It is known (see for example [21, 22, 27]) that the classical necessary and sufficient
condition for the continuous Hardy inequality in an interval translates to the discrete case.
Namely, if is a chain (i.e. a tree where each vertex has at most one child), then inequalities
(2.2) and (2.1) hold if and only if

sup

1 1

. (2.3)

Moreover, the constant in (2.1) is proportional to .
The authors in [16] studied continuous Hardy inequalities on trees. Their main result can

be easily translated to the discrete case as shown in the following theorem. However, they
also showed that, on trees that are not chains, condition (2.3) is necessary for the validity of
(2.1), but not sufficient.

Theorem 1 Let be a discrete tree with root . Given a subtree of , we define its
boundary as

such that .

We also define the following class formed by some subtrees of :

subtree of and if then .
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For , we define the interior of , . Then inequality (2.1) holds if and
only if:

sup (2.4)

where:
inf 1 1 .

Moreover, the constant in (2.1) is proportional to .

Condition (2.4) is rather cumbersome and one can find it very hard to prove in practi-
cal examples. However, valuable information can be derived from it. E.g., fixing a vertex

, consider the sub-tree: . In this case, . On
the other hand, is the only vertex in and 1 becomes a dual characterization of

1 . Hence, the expression inside the supremum of (2.4) becomes the expression
inside the supremum of (2.3), which proves: . The converse is not true: in
[16, Section 5] an example is given where whereas remains bounded.

A recursive method for computing is given in [16], as well as several sufficient and
slightly less complex conditions. But the main difficulty of estimating a supremum over all
subtrees in remains. Hence, we prove in the following theorem a sufficient condition that
can be regarded as a generalization of (2.3), and which is almost as easy to check. On the
downside, we do not know if this new sufficient condition is also necessary for the validity
of (2.2).

Theorem 2 Let and be two weights that satisfy:

sup

1
1 1

1

(2.5)

for some 1. Then inequality (2.2) holds. In addition, the optimal constant in (2.2)

satisfies that 1

1

.

Proof We follow an idea used in [26], where a sufficient condition is given for the case
2. However, this new variant, with the inclusion of the parameter , gives a much

sharper result for our applications to inequalities in weighted Sobolev spaces.
We begin observing that the concavity of the function 1 1

implies, via the
mean value theorem, the following inequality for 0 1 2

2 1
1

2
1

1 1

2
1 1

1 . (2.6)

In order to prove the validity of (2.2) we can assume that 0. Now, let us define
. Applying the Hölder inequality we obtain:

1 1 1

1
.
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For the last factor, observe that for every in , where is
defined as 0. Thus, using this and (2.6) with 2 and 1 we have:

1

1 1
1 1 1 1

.

Now, we apply a telescopic argument along the path that goes from to , obtaining:

1
1 1 1 1

1
1 1

.

Interchanging the summations and applying condition (2.5) we obtain:

1
1 1

1

and the result follows.

Remark 1 Condition (2.5), with the parameter 1, resembles similar sufficient con-
ditions that appear when dealing with weighted inequalities involving two weights. For
example, see [28, Theorem 1].

Remark 2 Observe that condition (2.5) (as well as (2.3)) implies that . In
other words, .

Remark 3 The proof for Theorem 2 can be copied verbatim replacing by , both in the
inequality (2.2) and in the condition (2.5).

Observe that as approaches 1, condition (2.5) “tends” to condition (2.3). It seems that
we cannot take 1, since the factor 1 goes to infinity. However, condition (2.5) is
actually equivalent to (2.3) if is a chain. Indeed:

Theorem 3 If is a chain, then conditions (2.3) and (2.5) are equivalent.

Proof Equation (2.5) implies the validity of (2.2), which is equivalent to (2.3) on chains,
proving that (2.5) implies (2.3).

Suppose now that (2.3) holds. Then:
1 1

which in turn gives:

1 1
1 1 1 1

.
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Now, let us assume the following inequality holds on chains for any 1

1 1 1

. (2.7)

Using this, we obtain:

sup
1

1 1 1

1 1 1

sup
1 1 1

.

Hence, it only remains to prove (2.7). Let us first present the main idea of why (2.7) holds
naturally on every chain. Suppose that we are working on a continuous setting. In that case,
the left member of (2.7) would become:

d
1 1

d .

Now, through the substitution d , d d , we have:

0 1 1d
1

0
1

d
1

which is the continuous analog to the right hand side of (2.7).
Now, in the discrete case, we cannot change variables as we did with the integral, but an

adapted version of the same idea can be applied. We proceed in a similar way than the proof
of Theorem 2: we define . Recalling Remark 2, we have that
and lim 0. We denote by the child of along , which is unique thanks to
the fact that is a chain. Applying the convexity of the function

1
and a telescopic

argument, we obtain:

1 1

1 1

1 1

1
1

which completes the proof.

Observe that the fact that each has only one child is crucial for the telescopic
argument to hold. On general trees, this step cannot be performed, and the proof fails.

The proof of the previous theorem shows that condition (2.5) can be unravel into two:
the classical condition (2.3), and the additional (2.7). We state this as a corollary, although
for the application considered here it is easier to work directly with (2.5).

Corollary 1 Let be a tree. If and verify both (2.3) and (2.7)
(with any constant), then (2.5) holds.
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3 A Decomposition of Functions

Let be a bounded domain with 2. We refer by a weight to a
Lebesgue-measurable function, which is positive almost everywhere. Then, we define the
weighted spaces as the space of Lebesgue-measurable functions with
finite norm

d
1

.

Henceforth, will denote the distance functions to and
respectively.

Definition 1 Let be the space of constant functions from to and a collection
of open subsets of that covers except for a set of Lebesgue measure zero; is an index
set. It also satisfies the additional requirement that for each the set intersects a
finite number of with . This collection is called an open covering of .
Given 1 orthogonal to (i.e., 0 for all ), we say that a collection of
functions in 1 is a -orthogonal decomposition of subordinate to if
the following three properties are satisfied:

1. .
2. supp .
3. 0, for all .

We also refer to this collection of functions by a -decomposition. Notice that the third
condition is equivalent to the orthogonality to the space of constant functions. Indeed, this
condition can be replaced by d 0, for all and .

In Theorem 4 below, we show the existence of a -orthogonal decomposition by using a
constructive argument introduced in [23].

Definition 2 Given a countable open covering of , we say that a weight
is admissible if there exists a constant independent of such that:

ess sup ess inf (3.1)

for all . Notice that admissible weights are subordinate to of .

Example 1 One classical example is induced by a Whitney decomposition. Given
an open set, it is known (see, for example [29, Section VI]), that there exists a collec-
tion of dyadic closed cubes, , with edges parallel to the coordinate axis, such that

, satisfying the length ( ) of the edges of the cube ( ) is proportional to
, where the constant involved does not depend on . Moreover two neighbouring

cubes are of similar size. These properties are well adapted for working with weights that
depend on the distance to the boundary. Then, every weight , with in , is
admissible subordinate to , where 17

16 . A construction similar to a Whitney
decomposition is used in [23], and in Section 4.
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Example 2 Another example is the one studied in the articles [3, 7, 23], where is a
cuspidal domain with only one singularity (the tip of the cusp) on its boundary. For example,
we can consider

1 2
2 0 1 1 and 0 2 1

where 1. In this case, it is of interest to consider weights that depend on the distance to
the cusp instead of the distance to the boundary. For that reason, the partition of the domain
depends on the singularity we have at the origin as it can be seen at the open covering

0:
1 2 2 2

1 2 .
For this open covering, any power 0 of the distance to the cusp is admissible.

Definition 3 Let be a bounded domain. We say that an open covering is a
tree covering of if it also satisfies the properties:

1. , for almost every , where 1.
2. The set of subindices has the structure of a rooted tree, i.e. it is the set of vertices of

a rooted tree with a root .
3. There is a collection of pairwise disjoint open sets with .

Remark 4 Given an open covering of a domain , one can choose an element of the cov-
ering as the root, and there are different ways to define a tree-covering. Notice that two
vertices on the tree are adjacent only if the intersection of their corresponding open sets
is non-empty. Some care should be taken in order to obtain a meaningful tree-covering,
according with the geometry of the domain. For example, it is known that the quasi-
hyperbolic distance between two cubes in a Whitney decomposition is comparable with the
shorter chain of Whitney cubes connecting them (see [18]). Hence, on an open covering
like the one in Example 1 and using an inductive argument, we can define a tree-covering
such that the number of Whitney cubes in each chain to the root (a distinguished cube) is
minimal. This tree structure contains some geometric information in terms of the quasi-
hyperbolic distance. Another possible tree-covering on a Whitney decomposition can be
defined when the domain is a John domain, in which case each chain connecting a Whitney
cube with the root is a Boman chain. This type of tree-covering, which characterizes John
domains, is introduced in [25].

The open covering for external cusps in Example 2 can be seen as a tree-covering that is
actually a chain, with the root defined as the open set furthest from the tip of the cusp.

Given a tree covering of and admissible weights subordinate
to , we define the following discrete Hardy-type inequality on trees for positive
sequences

1 1

(3.2)

where the sequence weights and are defined as

ess inf and ess inf .

Observe that here is where the necessity of working on becomes apparent, since the
weights depend on , which plays the role of the edge between and , and is not defined
for the root of the tree.
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Remark 5 Observe that (3.2) is exactly (2.1), taking
1

and
1

.

Theorem 4 Let be a bounded domain with a tree covering such that

for every , and let be admissible weights, with 1 , such
that and the weighted discrete Hardy inequality on trees (3.2)
holds. Then, given in , with 0, there exists , a -decomposition
of , such that

d d . (3.3)

Proof Observe that since , then 1 . Indeed, using the Hölder
inequality and the integrability of we obtain:

d 1 d

1 1

.

Now, let be a partition of the unity subordinate to . In other words, we
have that supp , 0 1 and 1 . Now, we can define
an initial decomposition for given by . The collection satisfies the first
two properties in Definition 1, but not necessarily the third one. Hence, we modify these
functions in order to obtain the -orthogonality.

For , we define the shadow of , as:

and for

where is the characteristic function of . Note that supp and d
. Now, we take:

.

Note that the summations above are finite since they are indexed over the children of (or
). With this definitions, we have for :
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0.

Whereas for :

0.

Hence, is a - decomposition of . It remains to prove estimate (3.3),
which is a consequence of inequality (3.2). Recall that the support of each , with ,
is included in , and the collection of open sets is pairwise disjoint. Moreover,
appears in the definition of if and only if or . Now using the basic inequality

2 1 repeatedly we can prove the estimate:

d

2 1 d

2 1 d

2 1 d

d

d

2 1 d 2 d

2 1 d 2 d

.

The term gives the desired estimate thanks to the embedding
.
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Now, observe that

1 1
.

Thus,

1 d

1 d .

Now, we apply (3.2) with , obtaining:

1 d

1 d d

1 d

d

which completes the proof. The constant depends on the constants in (3.1) for and ,
on the constant that appears on Definition 3, on sup and linearly on the constant on
(3.2).

Remark 6 Observe that, combining Remark 5 with Remark 2, it is easy to check that the
requirement 1 is implied by the validity of the Hardy-type inequality (3.2).

4 Decomposition on Hölder Domains

In this section, we prove that a -orthogonal decomposition of a function as the one given
in Theorem 4 can be obtained when is a Hölder- domain, and the weights are powers of
the distance to .

Let be a bounded domain whose boundary is locally the graph of a function that
verifies: for all . Our approach follows the construction
given in [23, Section 6].

Let 3
2

3
2

1 be a Hölder- function with 0 1 and 0. We also
assume that 2 3 . Consider:

2 2
1 0 . (4.1)

We could assume is locally , but in that case, the distance to is not necessarily
equivalent to the distance to the portion of the graph of above 2 2

1. Thus, in order
to solve this problem, we assume is locally an expanded version of :

3
2

3
2

1 0 . (4.2)
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Now, for , the distance to is equivalent to the distance to:

3
2

3
2

1 .

We denote the distance to . Now, we can prove our first result regarding Hölder-
domains, namely:

Lemma 2 Let be the domain defined in (4.1) for some 0 1, and satisfying:

. (4.3)

Then, given in with vanishing mean value, there exists a decomposition

of that satisfies estimate (3.3) with and 1.

Proof We build a tree covering of and prove that the hypotheses of Theorem 4 hold on
it. The main idea is to give a Whitney-type decomposition of into cubes that satisfies:

– The edge of a cube is proportional to .
– Two adjacent cubes have comparable sizes.

The cubes are constructed level by level, moving upward towards the graph of . The level
0 is given by the root cube 2 2

1 0 . The other cubes are built recursively.
Suppose that 1 2 is a cube of level . Then, cubes in level 1, with

, are defined in the following way: consider the cube 3 0 0 ,
which denotes an expansion of a translated copy of . Then:

– If , then we define only one cube at level 1 with ,
0 0 .

– If , we define 2 1 cubes at level 1 with , written as
2 2

2 , where is one of the 1 -dimensional cubes given by the
partition of into 2 1 cubes with edges of length 2 .

See Fig. 1 for an example of this construction.
It is easy to check that this partition satisfies the two main properties of a Whitney

decomposition mentioned above. Recall that in a tree covering a certain overlapping of
the elements is needed, but our cubes are pairwise disjoint, so we need to enlarge them.
If 1 2 , we can expand it downward with a half of itself, defining

1
2

2 . Now is a tree covering, with 1
2

1 .
We denote the underlying set of indices with tree structure.

Now, we need to prove that the hypotheses of Theorem 4 hold for the weights

and 1. Notice that the tree covering defined above satisfies that 3
2 for every

. Moreover, observe that 1 since 1.
Notice that, by construction:

max min

which implies that the weights and are admissible. As we mentioned in Remark 5, (3.2)

is equivalent to (2.1) and (2.2) with
1 1 and

1
. Thus, the rest of

the proof is devoted to verifying the sufficient condition (2.5) for these weights and finally
the integrability of .

Without loss of generality, we assume that 1, and thus the edge of every cube is 2
for some . Since (2.5) involves summations over the shadow of a node, and over
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Fig. 1 Partial representation of a partition of into cubes

the path that goes from to , we begin by estimating the number of cubes of a given
size both in and . Definitions of the shadow and path appear in page 4.

Consider a cube 1 2 and take the first cube going downward from
, such that and 2 . We have that 3 0 0 . Hence, there

is some 3 such that 2 2 1 2 1 4 (see Fig. 2 (left)).
Now, for every :

1 4
1 4 .

Now, let us consider the shadow , the union of all the cubes with in .
Then, the above estimate and the fact that gives:

1 4 1

where is independent of . Finally, for , let us denote and the number
of cubes of side length 2 with in and respectively. Namely:

# 2

# 2 .

We want to estimate both of these quantities. For , let us take the lowest index
in such that 2 . Now, is at most the number of cubes with edges in .
Hence:

1 1 2 1 .

Observe that, in particular, this is an estimate for the number of cubes of the same size in a
chain of cubes.

On the other hand, for , we assume 2 , and consider the set of the first
cubes such that and 2 . In Fig. 2 (right) a cube is shown, along with
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Fig. 2 Left: given , we can estimate in terms of . Right: a cube and the first cubes with edges
of length 2 in its shadow

the four first cubes of a certain size in . There are
1

1 of such cubes. Moreover each of

these cubes is followed by a chain of cubes with side length 2 which is bounded by
2 1 . Therefore:

1 1 2 1 2 1 .

Finally, we can prove sufficient condition (2.5). We have three indices in : , and ,
for which we have: 2 , 2 , 2 . Hence:

1

0

2 2 1

0

2 1 1

0

2
1

2
1

.

In the last step we used that the exponent is positive. Indeed:

1 1
0

since . In the same way, we obtain that:

2
1

.

Let us denote:
1 1 1 1

.
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Recall that we want to prove that sup . Then:

2
1 1 1 1 1

2
1 1

2 2 2
1 1 1 1

2
1 1

2 1 2
1 1 1 1

2
1 1

2 1 1
2

1 1 1 1

.

For the summation to be finite, we need the exponent of 2 to be negative or equivalently:

1
1

1
0.

But (4.3) implies 0, so we can choose 1 but close to 1 such that the
inequality above remains valid. Now, we can continue the estimate:

2
1 1

2 1 1
2

1 1 1 1

2
1 1 1 1 1 1

.

Since is the supremum of over , we need to be bounded uniformly on , which
is to say on , hence we need:

1 1 1 1
1

1
0.

But it is easy to check that, in fact, 0. Hence, (2.5) is fulfilled.
Finally, as we mentioned in Remark 6 the integrability of the weight is implied by

the sufficient condition for the Hardy-type inequality (3.2). Indeed:

d d
0

2 2

0

2 2 2
0

2

which is finite since .

Remark 7 The previous lemma was stated assuming a certain fixed shift in the exponents of
the weights. However, one can prefer to consider the general case, with two different weights

and . In that case, the proof of Lemma 2 can be reproduced verbatim until
the last step, where the exponent in the estimate of should be studied. The requirement

0 is not automatically fulfilled, but implies the restriction 1, where
the natural shift between the weights becomes apparent. In order to simplify the proof, we
stated the lemma in the critical case 1, which is the most useful.
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Lemma 2 constitutes the core of the decomposition on Hölder- domains. In order to
extend this result to a complete Hölder domain, we just need to cover it with patches given
by rectangles of the form of :

Theorem 5 Let be a Hölder- bounded domain, with 0 1, and satisfying
that . Then, given , with vanishing mean value, there exists a

decomposition of subordinate to a partition of that satisfies:

1 d d . (4.4)

In addition, the partition is formed by one smooth domain 0, with positive distance to ,
and denumerable cubes or cubes extended by a factor 3 2 in one direction.

Proof Let us begin by covering with a finite number of open sets for 1 ,
such that are of the form of defined in (4.1). We may assume also that
there are open sets such that are of the form of , defined in (4.2). Then,
we take a smooth domain 0 that intersects each , with 1 , and such that

0 0, and 0 .
We continue by using the idea by Bogovskii in [5] for a finite partition and Lemma 2 in

each , with 1 . Indeed, let us apply an inductive argument. Let be two
sets such that 0 and a function such that 0. Then,
we can decompose in in the following way:

where . It follows from the integrability of that is integrable
and the functions and are well-defined. In order to show the weighted integrability
of and , it is sufficient to estimate the second term of . By the Hölder inequality,
we obtain:

d d

1
1
.

Hence the weighted integral of the second term of is:

d

1 d .
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Now, we use that 1 and the integrability of , which gives:

d

d

1

.

Since 0 on , which has positive measure, we can conclude that
0. Thus, there is a constant such that:

.

Furthermore, it is easy to check that and are supported in and respectively and
that both has vanishing mean value.

Next, we can apply this argument with and 1
0 , and then again with

1 and
2
0 , etc. Therefore, we obtain for every , with

vanishing mean value on , a finite decomposition 0 , such that is supported
on and has vanishing mean value, with the estimate

0

.

Now, each for 1 can be decomposed applying Lemma 2 with estimate
(3.3). And, using that is bounded and 1 0, we have:

0 1 0

which completes the proof.

5 Applications to Inequalities on Hölder Domains

In this section we present several results regarding different inequalities on Hölder-
domains. In all the cases the proof follows a similar model: given a function with vanish-
ing mean value on , we consider a partition , as the one provided by Theorem 5 and
apply the decomposition to . Then, we apply an unweighted version of the inequality on
each , for , and take advantage of the estimate (4.4) for recovering a global norm. For
doing this we rely heavily on the fact that the distance to , , can be regarded as con-
stant over each . In other words, we can define values such that ,
where the constants involved in the proportionality are independent of . Moreover, we have
that each is either a smooth domain ( 0 in the proof of Theorem 5), or a cube or a cube
expanded along one direction by a factor 3

2 . For this simple domains, we can control the
constant involved in the unweighted inequality.
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The divergence problem is solved directly: we apply the decomposition to the data .
For the other results a duality characterization of the norm on the left hand side is used,
and the decomposition is applied to the function in the dual space of the one where the
function involved in the inequality belongs. For applying this argument we need the lemma
below.

Recall that the weight is integrable over . Thus, let us define the following subspace
of :

and with supp 0 .

Lemma 3 is dense in , and any verifies that

2 .

Proof First, let us prove the estimation in the lemma. Notice that

.

Thus, by using the Hölder inequality we obtain

1 1 1

which implies the estimate.
Now, given and 0, let us show that there exists in

sufficiently close to . Using again that is integrable, we define by

.

Then, the function has a vanishing mean value, but it does not
necessarily have a compact support. Thus, let be an open ball, independent of , such that

. And, let be an open set that contains such that and

1

where denotes a characteristic function. Finally, let us show that the following function
fulfils the requirements

.
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Following some straightforward calculations, it can be seen that belongs
to . And, by using the Hölder inequality multiple times we conclude the proof of the
lemma with the following estimation

1

1
1

1

1
1

.

The importance of this lemma will become evident later, in the proof of the improved
Poincaré inequality, which is the first result that is obtained via a duality argument.

5.1 The Divergence Equation

In this subsection, we study the problem div u in with boundary condition u 0
on , for certain such that 0. In addition we want to obtain an estimate for the
norm of the solution u in terms of the datum . The unweighted estimate u

, that is valid on regular domains, cannot hold on Hölder- domains due to
the singularities on the boundary of . Weighted norms can be used to compensate those
singularities, as shown in the following inequality:

u 1 .

Such a result was extended in [14], under certain additional hypotheses. Indeed, in that
paper only the planar case is considered, and is assumed to be included in a 1 Ahlfors
regular set. In this context the following estimate is proven:

u 1 (5.1)

where the restrictions 0 1 and 1 are imposed on . It is important to notice
that we have stated (5.1) in the same terms of our results to simplify the comparison. We
follow the same principle when citing previous results in the next subsections.

Observe that the restrictions on allows the weight to be transferred partially (or totally)
to the right hand side. The case 1 is used to prove well-posedness of the Stokes
equations. The estimation (5.1) was generalized in [23] where the restrictions on the dimen-
sion on , on the parameter , and on the Ahlfors regularity on were lifted, with the
exception of the requirement 0. Our result shows that this restriction can be relaxed,
and that it is enough to ask .

Theorem 6 Let be a bounded Hölder- domain, and . Given

0 such that 0, there exists a vector field u 1
0

1 ,
solution of divu , that verifies the estimate (5.1).
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Proof It is known (see, for example, [17]), that given a John domain and ,
with vanishing mean value, there exists u 1

0 such that divu and:

u 1 .

Moreover, a simple scaling argument shows that the result holds with the same constant
for every cube (or, more generally, for every rectangle with a fixed aspect ratio). Indeed,
consider a reference cube 0 1 . For simplicity, we take some other cube,
with edges parallels to the coordinate axis and of side-length . We can consider the affine
map being a fixed vertex of . Then, given
such that 0, we define and u the solution of div u on .
Now we define u u 1 , which satisfies that div u div u 1

1 div u . The estimate follows in a similar way, where the constant

is the same for and for the fixed cube . If the edges of are not parallel to the axis,
a rotation needs to be included in , but the same idea follows.

Now, given a Hölder- domain, and such that 0, we con-
sider the decomposition of given by Theorem 5. For each , we have a solution
u of divu , supported on , with the unweighted estimate:

u .

In addition, we can choose a uniform constant for every . Now we define u
u , which satisfies that div u in and u 0 on . Moreover, we can take a

constant for each , and:

u 1 u 1

1 u

1

1 d

d

where in the last step we used (4.4).

5.2 Improved Poincaré inequality

Improved Poincaré inequalities have been largely studied in several contexts. For a Hölder-
domain , it is proven in [4] (and later in [12]) that:

for every with vanishing mean value on .
A weighted extension of this result was given in [1], where the authors proved:

for satisfying 0 1 . We show that this restrictions on can be reduced to the
requirement .
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Theorem 7 Let be a Hölder- domain for some 0 1, and . Then, there
exists a constant such that for all , with 0, it follows that

.

Proof We study the norm of using a duality characterization. Thanks to Lemma 3, it is
enough to consider :

sup
1

sup
1

sup
1

.

In the last step, we used that 0 and is a constant. Now, since has vanishing
mean value, we can apply the decomposition of Theorem 4:

sup
1

.

Here the necessity of Lemma 3 becomes clear: since the support of is compact in , it
intersects only a finite number of sets , so the summation is finite and it can be pulled out
of the integral. We denote 1 . Hence, using the orthogonality of and the
fact that for we have:

1 1

1

1

1

1

1
1

.

In the last step we used (4.4).
In order to complete the proof, we recall that, thanks to the estimate in Lemma 3,

2, and that the Poincaré inequality holds on the unweighted case for
smooth domains. Moreover, for convex domains the constant is proportional to the diam-
eter of the domain. In our case, the diameter of each cube is proportional to ,
hence:

1
1

1

.
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5.3 Fractional Poincaré Inequality

Recently, different versions of the classical fractional Poincaré inequality have been studied.
For example,

inf d d
1

(5.2)

for 0 1 . Let us recall that the classical fractional Poincaré inequality is obtained by
replacing the right hand side in (5.2) by the seminorm of , for 0 1, where
the double integral is taken over . Both expressions (seminorms) are equivalent for
Lipschitz domains ([15, equation (13)]), but this equivalence fails on irregular domains such
as Hölder- domains. The classical inequality holds for every bounded domain (see, for
example [10, Section 2], [19, Proposition 4.1]). In addition, it is shown in [19, Proposition

4.1] that the constant involved in the inequality is proportional to
1
. On

the other hand, the stronger version (5.2) fails on irregular domains. Here we prove a weaker
version of this inequality in weighted spaces for Hölder- domains.

Theorem 8 Let be a Hölder- domain, with 0 1, , with
0 1 and , and 0 1 . Then:

inf

1 d d
1

(5.3)

where min .

Proof For simplicity, we may assume that 0. As in Theorem 7, we write the
norm on the left hand side by duality and apply Lemma 3. Taking :

sup
1

sup
1

.

Now, we apply the decomposition for the function and the estimate (4.4). Thus, for any
set of constants , we have:

1 1

1

1

.

For completing the proof we invoke [19, Proposition 4.2], that states that for a cube
with edges of length :

inf
1
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for any 0 1 . This result also holds for the elements that are cubes expanded in
one direction by a factor 3

2 . For the central subdomain 0, we apply inequality (5.2) (which
holds, since 0 is a Lipschtiz domain). Hence, we obtain:

1

1

.

Since for every and , we continue:

1

1

1

1

1
1

which completes the proof.

This result provides a partial generalization of the one obtained in [10]. In that paper,
a more general form of the inequality is considered, with different exponents and on
the left and right hand sides, as well as a larger class of domains. However, for technical
reasons, when dealing with Hölder- domains, only the case 0 is considered. Our result
is equivalent to [10, Theorem 5.1] with , but the restriction on is weaker.

Moreover, [10, Theorem 5.2] shows that the shift in the exponent between the left and
right hand sides of (5.3) is optimal.

5.4 Korn’s Inequality

Given a vector field u 1 , Korn’s inequality states that,

u u (5.4)

where v v v
2 is the symmetric gradient. This result fails when u vanishes but

u does not. Thus, some additional condition on u is needed. The so-called first case states
the inequality when u vanishes on the boundary of , and it can be proven using simple
arguments, for every bounded domain. We are interested in the second case that establishes
that (5.4) holds when u u

2 0. This case requires deeper considerations on the
domain and it actually fails for irregular domains.

A general case is also considered in the literature:

u u u (5.5)

which does not need any further assumption on u. Inequality (5.5) can be easily derived
from the second case of (5.4) (see, for example [6]). The converse can be proved, for regular
domains, using a compactness argument (see [20]).

We prove the following weighted version of (5.4).
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Theorem 9 Let be a Hölder- domain for some 0 1, and u 1

with , such that u u
2 0 then,

u u 1 .

Proof Observe that if we denote u u u
2 then u u u . Thus, it is

enough to prove the estimate for the coordinates u of the matrix u , that have van-
ishing weighted mean value. The estimate is obtained by following step by step the proof of
Theorem 7 so we only give references for the needed unweighted inequalities. The norm of

u is characterized by duality via Lemma 3. The unweighted estimate (5.4) is known to
hold for convex domains with a constant proportional to the ratio between the diameter of

and the diameter of a maximal ball contained in (see [13]). Hence, a universal constant
can be taken for every that is a cube or a cube expanded in one direction by a fixed factor.
On the other hand, for the central subdomain 0, we can apply [11, Corollary 2.2] where it
is shown that (5.4) holds on domains of Jones, which include Lipschitz domains.

This generalizes [1, Theorem 3.1] and [14, Theorem 2.1], where a similar result is
proven, but only for 0 1 . In both cases the result is stated in the form of (5.5) but
it is derived from the second case. In [2] a counterexample is given that shows that the shift

1 between the exponents on the left and right hand sides is optimal.
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Appendix A: Proof of Theorem 1

We derive the discrete result from a continuous analogous proven in [16]. We begin by
obtaining another equivalent form for the Hardy-type inequality:

Lemma 4 Inequalities (2.1) and (2.2) are equivalent (with the same constant ) to:

1

1 1

(A.1)

for every .

Proof Equation (A.1) is obtained from (2.2) by changing variables .

We deduce inequality (A.1) from the continuous case. Let be a continuous
tree with root . By continuous, we mean that the edges in are segments in the plane, with
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a certain length. In [16], the authors consider and two weights and study the operator
1 2 given by:

d .

Where the integral is taken along the path that connects the root with the point , that
could lie anywhere in . Here we are only interested in the case 1 2 , so we
consider and , but the same ideas could be applied to the general
case. is continuous in if and only if:

sup
d d

1

d
1 .

Given a sub-tree , we denote the boundary of . We say that is maximal
if every point does not belong to . We define the set of all sub-trees of
containing and such that every boundary point is maximal. We also define:

sup
d

1

where

inf d .

Now, we can state the main result of [16], namely:

Theorem 10 is continuous if and only if . Moreover:

4 .

Proof See [16, Theorem 3.1].

Finally, we can prove the theorem:

Proof of Theorem 1 We prove that given a discrete tree, and
positive weights, inequality (A.1) holds for every F if and only if:

sup

1

.

Moreover 4 .
In order to apply Theorem 10, we build a continuous tree from by assigning each

edge in a length of 1. Take 0 1. We denote the points in the edge
that are at a distance less than from . For each , we take a function such that:

supp d 1.
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Now we complete the setting for the continuous problem by defining, for the
functions:

– ,
– 1,
– .

In the definition of we take and as the weights and the supremum over all
functions that are constant on each edge and denote the result . Analogously, is
with and . We prove that and when 0 .

First, for , observe that we can assume without loss of generality that (hence, ) is
positive. Then:

d d d d

1 1 1 d

1 1 d

1 1 .

On the other hand:

d d d d

1 d 1 .

Finally, observe that

.

Hence, we have:
1

which proves that , when 0 .
For , take 0 and such that

1

.

Consider the continuous subtree obtained by removing from the points that are at a
distance less than from its leaves. Then:

d d .

In a similar way, it is easy to see that:

lim
0

.
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Moreover, we have that if 1 2 and 1 2, then 1 2 . In particular, this
means . This implies:

and lim
0

.

Since this can be done for every 0, we have: .
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25. López-Garcı́a, F.: Weighted Korn inequalities on John domains. Studia Math. 241(1), 17–39 (2018).
https://doi.org/10.4064/sm8488-4-2017

26. Miclo, L.: An example of application of discrete Hardy’s inequalities. Markov Process. Related Fields
5(3), 319–330 (1999)

27. Okpoti, C.A.: Weight characterizations of Hardy and Carleman type inequalities. PhD thesis, Luleå
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