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Abstract. We show a weighted version of the Korn inequality on bounded Euclidean
John domains, where the weights are nonnegative powers of the distance to the boundary.
In this theorem, we also provide an estimate of the constant involved in the inequality
which depends on the exponent that appears in the weight and a geometric condition that
characterizes John domains. The proof uses a local-to-global argument based on a certain
decomposition of functions.

In addition, we prove the solvability in weighted Sobolev spaces of divu = f on the
same class of domains. In this case, the weights are nonpositive powers of the distance to
the boundary. The constant appearing in this problem is also estimated.

1. Introduction. Let Ω ⊂ Rn be a bounded domain with n ≥ 2, and
1 < p <∞. The classical Korn inequality states that

(1.1) ‖Du‖Lp(Ω)n×n ≤ C‖ε(u)‖Lp(Ω)n×n

for any vector field u in the Sobolev space W 1,p(Ω)n under appropriate
conditions. By Du we denote the differential matrix of u and by ε(u) its
symmetric part,

εij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
.

Naturally, the constant C depends only on Ω and p. This inequality plays a
fundamental role in the analysis of the linear elasticity equations, where u
represents a displacement field of an elastic body. The tensor ε(u) is called
the linearized strain tensor and (1.1) implies the coercivity of the bilinear
form associated to the underlying linear equations. The two conditions on
the vector field considered by Korn in his seminal works [K1, K2] were:

u = 0 on ∂Ω (usually called the first case), and
	
Ω

(
∂ui
∂xj
− ∂uj

∂xi

)
= 0 (the
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second case). These two conditions exclude the nonconstant infinitesimal
rigid motions (i.e. fields u such that the right-hand side of (1.1) vanishes
while the left-hand side does not).

Inequality (1.1) in the first case can be easily proved on any arbitrary
domain Ω by using the divergence theorem [F, H]. Moreover, it is known that
the optimal constant is

√
2. In this work, we deal with the Korn inequality in

the second case, where its validity depends on the geometry of the domain.
This inequality has been studied under different assumptions on the domain.
For example, it is known that the inequality is valid if Ω is a star-shaped
domain with respect to a ball [R]. This class contains the convex domains.
The proof in [R] is based on certain integral representations of the vector
field u in terms of ε(u). Other authors have studied this inequality on these
domains using different arguments [H, KO, T]. Uniform domains also satisfy
the Korn inequality. This was proved in [DM] by modifying the extension
operator given by Peter Jones [Jo].

The largest known family of domains where (1.1) holds is the class of
John domains. This class was introduced by Fritz John [Joh] and named
after him by Martio and Sarvas [MS]. Let us recall the definition of this
family. A bounded domain Ω ⊂ Rn, with n ≥ 2, is called a John domain
with parameter CJ > 1 if there exists a point x0 ∈ Ω such that every y ∈ Ω
has a rectifiable curve parameterized by arc length γ : [0, l] → Ω such that
γ(0) = y, γ(l) = x0 and

(1.2) dist(γ(t), ∂Ω) ≥ 1

CJ
t

for all t ∈ [0, l], where l is the length of γ. Any Lipschitz domain is a
John domain. Another example is the Koch snowflake which has a fractal
boundary. A version of the Korn inequality different from (1.1) on John
domains can be found in [ADM], where it is obtained as a consequence
of the main result of that article on the solvability of div u = f with an
appropriate a priori estimate. Diening et al. [DRS] proved (1.1) on John
domains where the vector fields belong to a weighted Sobolev space with
weights in the Muckenhoupt class Ap. More recently, a weighted version of
the Korn inequality different from the one treated in this article has been
shown in [JK], where the weights are also nonnegative powers of the distance
to the boundary. The proof is based on a certain improved version of the
Poincaré inequality of [Hu], later generalized in [ChW2].

In this note, we are particularly interested in finding an estimate of the
constant that appears in the inequality. This problem has been addressed
in several articles. For instance, Durán [D] estimates the constant in (1.1),
with p = 2, in terms of the ratio between the diameter of Ω and that
of B when Ω is a star-shaped domain with respect to a ball B. Another
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recent article [CD] dealing with the estimation of the constant in the Korn
inequality considers star-shaped planar domains. This problem has also been
studied in the classical reference [HP]. However, we could not find in the
literature estimates of the constant in the Korn inequality when Ω is a John
domain.

Our main theorem is a weighted version of the Korn inequality on John
domains, where the weight is a nonnegative power of the distance to the
boundary. Moreover, we estimate the Korn constant in terms of the geomet-
ric condition introduced in (5.2). Similar estimates for weighted Poincaré
inequalities which depend on the eccentricity of a convex domain has been
proved in [ChD, ChW1]; the authors also consider nonnegative powers of
the distance to the boundary.

Given a vector field u we denote by η(u) the skew-symmetric part of the
differential matrix Du,

ηij(u) =
1

2

(
∂ui
∂xj
− ∂uj
∂xi

)
.

We denote by Lp(Ω, ν) and W 1,p(Ω, ν) the weighted Lp and Sobolev
spaces with measure ν(x)dx.

Theorem 1.1. Let Ω ⊂ Rn be a bounded John domain with n ≥ 2, and
let 1 < p <∞ and β ∈ R≥0. Then there exists a constant C, depending only
on n, p and β, such that( �

Ω

|Du|pρpβ dx
)1/p

≤ CKn+β
( �
Ω

|ε(u)|pρpβ dx
)1/p

(1.3)

for all vector fields u ∈ W 1,p(Ω, ρpβ)n that satisfy
	
Ω ηij(u)ρβp = 0 for

1 ≤ i < j ≤ n. The function ρ(x) is the distance to the boundary of Ω and
the constant K is introduced in the geometric condition (5.2) below.

Notice that ρpβ does not belong to the Ap Muckenhoupt class for large
β > 0. Thus, many of the techniques that use the theory of singular integral
operators and depend on the continuity of the Hardy–Littlewood maximal
operator may not be applicable in this case.

The paper is organized as follows: In Section 2, we introduce some def-
initions and notation. In Section 3, we show how certain decompositions
of functions can be used to extend the local validity of the Korn inequal-
ity to the whole domain Ω. In this part of the article, Ω is an arbitrary
bounded domain. Section 4 deals with the existence of the required de-
composition of functions. In Section 5, we apply the results proved in the
previous two sections on John domains to demonstrate the main result of
the article.
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2. Definitions and preliminaries. Throughout the paper, Ω ⊂ Rn
is a bounded domain with n ≥ 2, 1 < p, q < ∞ with 1/p + 1/q = 1,
and ω : Ω → R is a positive measurable function such that ωp is integrable
over Ω. By Lp(Ω,ωp) we denote the space of Lebesgue measurable functions
u : Ω → R equipped with the norm

‖u‖Lp(Ω,ωp) :=
( �
Ω

|u(x)|pωp(x) dx
)1/p

.

Similarly, we define the weighted Sobolev space W 1,p(Ω,ωp) as the space of
weakly differentiable functions u : Ω → R with the norm

‖u‖W 1,p(Ω,ωp) :=

( �

Ω

|u(x)|pωp(x) dx+
n∑
i=1

�

Ω

∣∣∣∣∂u(x)

∂xi

∣∣∣∣pωp(x) dx

)1/p

.

Finally, ωp(U) :=
	
U ω

p.

In what follows, C denotes various positive constants which may vary
from line to line. We use Ca or C(a) to denote a constant which only depends
on a.

Let us introduce the decompositions considered in this article.

Definition 2.1. Given m ∈ N0, let Pm be the space of polynomials of
degree no greater than m. Moreover, let {Ωt}t∈Γ be a collection of open sets
that satisfies Ω =

⋃
t∈Γ Ωt. Now, given g ∈ L1(Ω) such that

	
gϕ = 0 for

all ϕ ∈ Pm, we say that a collection {gt}t∈Γ of functions is a Pm-orthogonal
decomposition of g subordinate to {Ωt}t∈Γ if the following three properties
are satisfied:

(1) g =
∑

t∈Γ gt,
(2) supp(gt) ⊂ Ωt,
(3)

	
Ωt
gtϕ = 0 for all ϕ ∈ Pm.

We may also refer to this collection of functions as a Pm-decomposition.

Remark. In this paper, we only use P0-decompositions but we provide
the more general definition due to its interest is other applications. Indeed,
the version of the Korn inequality treated in this note can be thought of as an
estimate of a certain weighted distance to the vector space {Dw : ε(w) = 0}.
The reason whyP0-decompositions are sufficient in this case is that any matrix
in this vector space has constant coefficients. When more complex vector
spaces are involved, such as the ones appearing in the study of the traced-free
version of the Korn inequality [Da, R] or in interpolation in Sobolev spaces
by polynomials, it would be necessary to work with Pm-decompositions or
even more general decompositions with respect to an appropriate vector
space V.
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A covering {Ωt}t∈Γ of Ω is a countable collection of subdomains of Ω
that satisfies

⋃
tΩt = Ω and the overlap estimate:

(2.1)
∑
t∈Γ

χΩt(x) ≤ N for all x ∈ Ω.

This condition is essential in this note, specifically in Sections 3 and 5.

3. A decomposition and weighted Korn inequalities. In this sec-
tion, we will show that the validity of a weighted version of the Korn in-
equality on Ω (introduced below) can be obtained from the local validity
of this inequality if we have an appropriate decomposition of functions in
Lq(Ω,ω−q). No additional assumptions on the domain are required in this
section apart from being bounded.

Given U ⊆ Ω, we say that weighted Korn inequality, with weight ωp,
holds on U if

(3.1) ‖Du‖Lp(U,ωp) ≤ C‖ε(u)‖Lp(U,ωp)
for any vector field u ∈ W 1,p(U, ωp)n that satisfies

	
U ηij(u)ωp = 0 for any

1 ≤ i < j ≤ n. An equivalent version of (3.1)

(3.2) inf
ε(w)=0

‖D(v −w)‖Lp(U,ωp) ≤ C‖ε(v)‖Lp(U,ωp),

where v is an arbitrary vector field in W 1,p(U, ωp)n. Let us mention that
the vector fields that satisfy ε(w) = 0 are characterized by

w(x) = Ax+ b,

where A ∈ Rn×n is a skew-symmetric matrix and b ∈ Rn.
The integrability of ωp required in Section 2 will be used several times,

in particular to show that

Lq(Ω,ω−q) ⊂ L1(Ω).

Now, given m ∈ N0, we denote by Vm(Ω,ω−q) (or simply Vm) the subspace
of Lq(Ω,ω−q) given by

Vm :=
{
g ∈ Lq(Ω,ω−q) :

�
gϕ = 0 for all ϕ ∈ Pm, and

supp(g) intersects a finite number of Ωt’s
}
.

Recall that Ω is bounded, so Pm ⊂ L∞(Ω). Since Lq(Ω,ω−q) ⊂ L1(Ω), we
see that Vm is well-defined.

Lemma 3.1. Given m ∈ N0 and a covering {Ωt}t∈Γ of Ω such that
each Ωt intersects a finite number of Ωs’s, the subspace Sm ⊂ Lq(Ω,ω−q)
defined by

Sm := {g + ωpψ : g ∈ Vm and ψ ∈ Pm}
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is dense in Lq(Ω,ω−q). Moreover, ‖g‖Lq(Ω,ω−q) ≤ C‖g + ωpψ‖Lq(Ω,ω−q),
where C does not depend on g or ψ. In the particular case when m = 0 the
constant in the previous inequality is equal to 2.

Proof. Let us remark that ωpψ belongs to Lq(Ω,ω−q). Indeed,

‖ωpψ‖q
Lq(Ω,ω−q) =

�

Ω

ψqωpqω−q ≤ ‖ψq‖L∞(Ω)‖ωp‖L1(Ω),

thus Sm is a subspace of Lq(Ω,ω−q).

Notice that any function F in Lq(Ω,ω−q) can be written as F = hF +
ωpψF , where hF ∈ Lq(Ω,ω−q) with

	
Ω hFϕ = 0 for all ϕ ∈ Pm, and ψF be-

longs to Pm. This follows from Pm being a finite-dimensional vector space.
Thus, the proof is basically reduced to showing existence of an approxima-
tion of hF in Vm (the support of hF does not necessarily intersect a finite
collection of Ωt’s). Let us go back to the proof of the existence of the repre-
sentation of functions in Lq(Ω,ω−q) mentioned above. Take an orthonormal
basis {ψi}1≤i≤M of Pm, where M is the dimension of Pm, with respect to
the inner product

〈ψ,ϕ〉Ω =
�

Ω

ψ(x)ϕ(x)ωp(x) dx.

The basis satisfies
	
Ω ψiψjω

p = δij , where δij is the Kronecker symbol. Thus,
we set hF := F − ωpψF and

(3.3) ψF :=
M∑
j=1

αF,jψj ,

where αF,j :=
	
Ω Fψj for any 1 ≤ j ≤M . These coefficients are well-defined

and

|αF,j | ≤ ‖F‖Lq(Ω,ω−q)‖ψj‖Lp(Ω,ωp)
for all j. In addition, using (3.3) we have

(3.4) ‖hF ‖Lq(Ω,ω−q)

≤
(

1 +
M∑
j=1

‖ψj‖Lp(Ω,ωp)‖ωpψj‖Lq(Ω,ω−q)
)
‖F‖Lq(Ω,ω−q).

Now, to approximate hF by a function in Vm we will need another or-
thonormal basis. Specifically, let us take a cube Q ⊂ Ω that intersects a finite
number of subdomains in {Ωt}t∈Γ and an orthonormal basis {ψ̃i}1≤i≤M of
Pm with respect to the inner product

〈ψ,ϕ〉Q =
�

Q

ψ(x)ϕ(x)ωp(x) dx.
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Notice that in this case we use Q instead of Ω, but each ψ̃j is a polynomial

in Pm and
	
Ω hF ψ̃j is still zero for all j. Now, given ε > 0, and using the

fact that Γ is countable and each Ωt intersects a finite number of Ωs’s, let
Ωε ⊂ Ω be an open set that contains Q, intersects a finite number of Ωt’s
and

‖(1− χΩε)hF ‖Lq(Ω,ω−q) < ε.

Then we define G := g + ωpψ with ψ := ψF and

g(x) := χΩε(x)hF (x) +
M∑
i=1

χQ(x)ωp(x)ψ̃i(x)
�

Ω\Ωε

hF (y)ψ̃i(y) dy.

Observe that supp(g) intersects a finite number of Ωt’s, and
	
Ω gψ̃j = 0 for

all j, thus g ∈ Vm. Moreover,

‖F −G‖Lq(Ω,ω−q) = ‖hF − g‖Lq(Ω,ω−q)

≤ ε+
M∑
i=1

∥∥∥χQ(x)ωp(x)ψ̃i(x)
�

Ω\Ωε

hF (y)ψ̃i(y) dy
∥∥∥
Lq(Ω,ω−q)

≤ ε+
M∑
i=1

�

Ω\Ωε

|hF (y)ψ̃i(y)| dy ‖ψ̃iωp‖Lq(Q,ω−q)

≤ ε
(

1 +

M∑
i=1

‖ψ̃i‖Lp(Ω,ωp)‖ψ̃iωp‖Lq(Q,ω−q)
)
.

Finally, we only have to estimate the norm of g by the norm of G =
g + ωpψ. This representation is unique so we can assume that g = hG and
ψ = ψG defined above. Thus, from (3.4) we have

‖g‖Lq(Ω,ω−q)

≤
(

1 +

M∑
j=1

‖ψj‖Lp(Ω,ωp)‖ωpψj‖Lq(Ω,ω−q)
)
‖g + ωpψ‖Lq(Ω,ω−q).

When m = 0, the space P0 has dimension 1 and we take the basis given by
the vector

ψ0(x) :=
1

(ωp(Ω))1/2
,

where ωp(Ω) :=
	
Ω ω

p. Thus, ‖ψ0‖Lp(Ω,ωp)‖ωpψ0‖Lq(Ω,ω−q) = 1, which yields
the constant 2.

The following is the main result of the section.

Theorem 3.2. If the weighted Korn inequality (3.2) is valid on Ωt, with
a uniform constant C1 for all t ∈ Γ , and there exists a P0-orthogonal decom-
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position of any g ∈ V0(Ω,ω−q) subordinate to {Ωt}t∈Γ , with the estimate∑
t∈Γ
‖gt‖qLq(Ωt,ω−q) ≤ C

q
0‖g‖

q
Lq(Ω,ω−q),

then the weighted Korn inequality (3.1) is valid in Ω: there exists a constant
C such that

(3.5) ‖Du‖Lp(Ω,ωp) ≤ C‖ε(u)‖Lp(Ω,ωp)
for any u ∈W 1,p(Ω,ωp)n with

	
Ω ηij(u)ωp = 0 for 1 ≤ i < j ≤ n.

Proof. The differential matrix of u can be written as the sum of its sym-
metric part ε(u) and its skew-symmetric part η(u). Thus, in order to prove
the theorem, it is necessary and sufficient to show that ‖ηij(u)‖Lp(Ω,ωp) ≤
C‖ε(u)‖Lp(Ω,ωp) for 1 ≤ i < j ≤ n.

Now, given t ∈ Γ , we have

(3.6) inf
α∈P0

‖ηij(u)− α‖Lp(Ωt,ωp) ≤ C1‖ε(u)‖Lp(Ωt,ωp)

for any 1 ≤ i < j ≤ n, where C1 is independent of t.

Let g+ωpψ be an arbitrary function in S0, with ‖g+ωpψ‖Lq(Ω,ω−q) ≤ 1.
The function ψ is simply a constant. Thus, using

	
Ω ηij(u)ωp = 0 and the

existence of the P0-orthogonal decomposition we have
�

Ω

ηij(u)(g + ωpψ) =
�

Ω

ηij(u)g =
�

Ω

ηij(u)
∑
t∈Γ

gt

=
∑
t∈Γ

�

Ωt

ηij(u)gt =
∑
t∈Γ

�

Ωt

(ηij(u)− α)gt = (I),

for any α ∈ P0. Observe that the sum in the previous lines is finite as g is a
function in V0. Next, applying the Hölder inequality to (I), inequality (3.6)
on each Ωt, and finally the Hölder inequality for the sum, we obtain

(I) ≤
∑
t∈Γ

inf
α∈P0

‖(ηij(u)− α)‖Lp(Ωt,ωp)‖gt‖Lq(Ωt,ω−q)

≤
∑
t∈Γ

C1‖ε(u)‖Lp(Ωt,ωp)‖gt‖Lq(Ωt,ω−q)

≤ C1

(∑
t∈Γ

�

Ωt

|ε(u)|pωp
)1/p(∑

t∈Γ
‖gt‖qLq(Ωt,ω−q)

)1/q
= (II).

Now, we use the estimate in the statement of the theorem, the estimate of
the overlap of {Ωt}t∈Γ and the estimate of the constant in Lemma 3.1:

(II) ≤ C1N
1/pC0‖ε(u)‖Lp(Ω,ωp)‖g‖Lq(Ω,ω−q)

≤ 2C1N
1/pC0‖ε(u)‖Lp(Ω,ωp).
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Finally, since S0 is dense in Lq(Ω,ω−q), taking the supremum over all
g + ωpψ ∈ S0 with ‖g + ωpψ‖Lq(Ω,ω−q) ≤ 1 we conclude that

‖ηij(u)‖Lp(Ω,ωp) = sup
g+ωpψ

�

Ω

ηij(u)(g + ωpψ) ≤ 2N1/pC0C1‖ε(u)‖Lp(Ω,ωp).

Thus,

‖Du‖Lp(Ω,ωp) ≤ ‖ε(u)‖Lp(Ω,ωp) + ‖η(u)‖Lp(Ω,ωp)
≤ (1 + 2n2/pN1/pC0C1)‖ε(u)‖Lp(Ω,ωp),

completing the proof.

Remark 3.3. Notice that the proof of Theorem 3.2 also gives an explicit
constant for the weighted Korn inequality (3.5) on Ω. Indeed, we can take

C = 1 + 2n2/pN1/pC0C1,

where C1 is a uniform constant for inequality (3.5) on each subdomain Ωt,
C0 is the constant involved in the estimate of the P0-decomposition and N
controls the overlap.

4. A P0-decomposition on general domains. In this section, we
show the existence of a P0-decomposition subordinate to a covering {Ωt}t∈Γ
of Ω if we have a certain order on Γ . The construction follows the ideas in [L],
where this kind of technique was used to prove the solvability in weighted
Sobolev spaces of the equation div u = f on some irregular domains.

Let us denote by G = (V,E) a graph with vertices V and edges E.
Graphs in this notes have neither multiple edges nor loops and the number
of vertices in V is at most countable. A rooted tree (or simply a tree) is a
connected graph G in which any two vertices are connected by exactly one
simple path, and a root is simply a distinguished vertex a ∈ V . The set of
vertices V of a tree will be usually denoted by Γ and we may say that Γ
has a rooted tree structure without specifying the set of edges E. Moreover,
if G = (Γ,E) is a rooted tree, it is possible to define a partial order “�”
in Γ as follows: s � t if and only if the unique path connecting t to the
root a passes through s. The height or level of any t ∈ Γ is the number of
vertices in {s ∈ Γ : s � t with s 6= t}. The parent of a vertex t ∈ Γ is the
vertex s satisfying s � t and whose height is 1 smaller than the height of t.
We denote the parent of t by tp. It can be seen that each t ∈ Γ different
from the root has a unique parent, but several elements on Γ could have
the same parent. Note that two vertices are connected by an edge (adjacent
vertices) if one is the parent of the other one.

Definition 4.1. Let Ω ⊂ Rn be a bounded domain and {Ωt}t∈Γ a
covering of Ω. We say that {Ωt}t∈Γ is a tree covering of Ω if Γ is the set
of vertices of a rooted tree, with root a ∈ Γ , such that for any t ∈ Γ with
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t 6= a, there exists an open cube Bt ⊆ Ωt ∩ Ωtp such that the collection
{Bt}t6=a is pairwise disjoint.

The tree structure on Γ gives a certain notion of geometry to Ω. We
are interested in graph structures which are consistent with the geometry
that we already have in Ω. In Section 5, we will show the existence of an
appropriate tree structure on Γ , where {Ωt}t∈Γ is a dilation of a Whit-
ney decomposition of a John domain Ω. Similar constructions have been
developed in [L] for Hölder-α domains and other examples.

Definition 4.2. Given a tree covering {Ωt}t∈Γ of Ω we define the Hardy
type operator T as follows:

(4.1) Tg(x) :=
∑
a6=t∈Γ

χt(x)

|Wt|

�

Wt

|g|,

where Wt =
⋃
s�tΩs and χt is the characteristic function of Bt for all t 6= a.

We may refer to Wt as the shadow of Ωt.

The next lemma is a fundamental result that proves the continuity of
the operator T . This result was shown in [L, Lemma 3.1].

Lemma 4.3. The operator T : Lq(Ω) → Lq(Ω) defined in (4.1) is con-
tinuous for any 1 < q <∞. Moreover, its norm is bounded by

‖T‖Lq→Lq ≤ 2

(
qN

q − 1

)1/q

.

It is well-known that the Hardy–Littlewood maximal operator plays an
important role in the theory of singular integral operators in weighted spaces.
This Hardy type operator plays a similar role when we want to define de-
compositions of functions in weighted spaces. Another article where Hardy
operators have been used to prove a weighted version of Korn’s inequality
is [AO], where the authors deal with certain domains which have an external
cusp.

Theorem 4.4. Let Ω ⊂ Rn be a bounded domain with a tree cover-
ing {Ωt}t∈Γ . Given g ∈ L1(Ω) such that

	
Ω g = 0 and supp(g) ∩ Ωs 6= ∅

for a finite number of s ∈ Γ , there exists a P0-decomposition {gt}t∈Γ of g
subordinate to {Ωt}t∈Γ (see Definition 2.1).

Moreover, fix t ∈ Γ . If x ∈ Bs where s = t or sp = t, then

(4.2) |gt(x)| ≤ |g(x)|+ |Ws|
|Bs|

Tg(x),

where Wt denotes the shadow of Ωt; otherwise

(4.3) |gt(x)| ≤ |g(x)|.
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Proof. Let {φt}t∈Γ be a partition of unity subordinate to {Ωt}t∈Γ , that
is a collection of smooth functions such that

∑
t∈Γ φt = 1, 0 ≤ φt ≤ 1 and

supp(φt) ⊂ Ωt. Thus, g can be decomposed into g =
∑

t∈Γ ft with ft = gφt.
This decomposition satisfies (1) and (2) in Definition 2.1 but not neces-
sarily (3). Thus, we will make some modifications to obtain orthogonality
to P0.

Define

(4.4) gt(x) := ft(x) +
∑
s: sp=t

hs(x)− ht(x),

where

(4.5) hs(x) :=
χs(x)

|Bs|

�

Ws

∑
k�s

fk.

Here χt is the characteristic function of Bt. The sum in (4.4) is over s ∈ Γ
such that t is the parent of s. When t is the root of Γ , (4.4) means

ga(x) = ga(x) +
∑

s: sp=a

hs(x).

Note that the functions hs in (4.5) are well-defined because g is inte-
grable. Moreover, hs 6≡ 0 only if ft 6≡ 0 for some a � s � t. Thus, hs 6≡ 0
for a finite number of s ∈ Γ . In addition, we have the following immediate
properties,

supp(hs) ⊂ Bs,

|hs(x)| ≤ |Ws|
|Bs|

χs(x)Tg(x) for all x ∈ Ω.
(4.6)

Using (4.6) we conclude that |gt(x)| ≤ |g(x)| + |Ws|
|Bs| Tg(x) for any x ∈ Bs

with s = t or sp = t, and |gt(x)| ≤ |g(x)| otherwise, proving (4.2) and (4.3).

Let us continue by showing that g(x) =
∑

t∈Γ gt(x) for all x. Take x ∈
Ω \

⋃
k∈Γ Bk. Then gt(x) = ft(x) for all t ∈ Γ , and∑

t∈Γ
gt(x) =

∑
t∈Γ

ft(x) = g(x).

Otherwise, if x belongs to Bk̃ for k̃ ∈ Γ , it can be observed that gt(x) = ft(x)

for all t such that t 6= k̃ and t 6= k̃p. We are using the fact that the cubes Bs
are pairwise disjoint. Moreover,

gk̃(x) = fk̃(x)− hk̃(x), gk̃p(x) = fk̃p(x) + hk̃(x).

Thus,
∑

t∈Γ gt(x) = g(x) for all x.

The second property in Definition 2.1 follows by observing that the par-
ent of each s in (4.4) is t, so Bs ⊆ Ωs ∩Ωt. Thus, supp(gt) ⊆ Ωt.
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Finally, in order to prove that gt is orthogonal to P0 for all t ∈ Γ observe
that k � t if and only if k � s with sp = t, or k = t. Thus,

�
ht =

�

Ws

∑
k�t

fk =
�

Ωt

ft +
∑
s: sp=t

�

Ws

∑
k�s

fk =
�

Ωt

ft +
∑
s: sp=t

�
hs.

Therefore,
	
gt = 0 for all t 6= a. Finally,

	
ga =

	
g = 0.

5. Korn inequalities and more on John domains. Let Ω ⊂ Rn be
a bounded John domain. In the first part of this section, in order to use
the results stated in Sections 3 and 4, we will show that there exists a tree
covering {Ωt}t∈Γ of Ω for which it is possible to estimate the ratio |Wt|/|Bt|
for any t ∈ Γ \ {a}. This covering also satisfies (2.1) and each Ωt intersects
a finite number of Ωs, with s in Γ .

A Whitney decomposition of Ω is a collection {Qt}t∈Γ of closed dyadic
cubes whose interiors are pairwise disjoint, which satisfies

(1) Ω =
⋃
t∈Γ Qt,

(2) diam(Qt) ≤ ρ(Qt, ∂Ω) ≤ 4 diam(Qt),
(3) 1

4 diam(Qs) ≤ diam(Qt) ≤ 4 diam(Qs) if Qs ∩Qt 6= ∅.

Two different cubes Qs and Qt with Qs∩Qt 6= ∅ are called neighbors. Notice
that two neighbors may have an intersection with dimension less than n−1.
For instance, they could intersect in a one-point set. We say that Qs and Qt
are (n− 1)-neighbors if Qs ∩ Qt is an n − 1-dimensional face. This kind of
covering exists for any proper open set in Rn (see [S] for details). Moreover,
each cube Qt has no more than 12n neighbors. And, if we fix 0 < ε < 1/4
and define Q∗t as the cube with the same center as Qt and side length 1 + ε
times the side length of Qt, then Q∗t touches Q∗s if and only if Qt and Qs are
neighbors. Thus, each expanded cube has no more than 12n neighbors and∑

t∈Γ χQ∗t (x) ≤ 12n.

Definition 5.1. A bounded domain Ω ⊂ Rn is said to satisfy the Bo-
man chain condition if there exists a Whitney decomposition {Qt}t∈Γ of Ω,
with a distinguished cube Qa, and λ > 1 such that for any cube Qt with
t ∈ Γ there is a chain of cubes pairwise different Qt,0, Qt,1, . . . , Qt,κ such
that Qt,0 = Qt, Qt,κ = Qa and

(5.1) Qt,i ⊆ λQt,j
for all 0 ≤ i ≤ j ≤ κ, where κ = κ(t).

Moreover, two consecutive cubes Qt,i−1 and Qt,i in this chain are (n− 1)-
neighbors.

This kind of condition was first introduced by Boman [Bom]. Later,
Buckley et al. [BKL] proved, in a very general context, that the condition
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introduced by Boman characterizes John domains. The formulation in Def-
inition 5.1 is slightly different from the one in [BKL], as we see that (5.1)
is valid for all 0 ≤ i ≤ j, and not just for i = 0 as in [BKL]. Thus, to
prove that any bounded John domain satisfies this definition we use [DRS,
Theorem 3.8].

Lemma 5.2. A bounded domain Ω ⊂ Rn is a John domain if and only
if it satisfies the Boman chain condition in Definition 5.1.

Proof. Definition 5.1 implies the definition of Boman chain used in [BKL],
so the converse statement in this lemma is proved. Let us show the di-
rect statement. Given a Whitney decomposition {Qt}t∈Γ of Ω and fol-
lowing [DRS], there is a distinguished cube Qa and λ > 1 such that for
each cube Qt there is a chain of pairwise different cubes Qt,0, Qt,1, . . . , Qt,κ
that connects Qt to Qa and satisfies (5.1). Let us modify this chain so
that two consecutive cubes in the chain are (n− 1)-neighbors. Suppose that
F := Qt,i−1 ∩Qt,i has dimension d in 0 ≤ d ≤ n− 2. Then we take n− d− 1
Whitney cubes intersecting F such that two consecutive cubes in the chain
Qt,i−1, Q1, . . . , Qn−d−1, Qt,i are (n− 1)-neighbors. Moreover, from the third
condition in the definition of Whitney decomposition we know that the dila-
tion by a constant Cn of each cube in this list contains the other ones. Thus,
repeating this process between two consecutive cubes in Qt,0, Qt,1, . . . , Qt,κt
and replacing λ by Cnλ in (5.1), we obtain a Boman chain of Whitney cubes
where two consecutive cubes are (n− 1)-neighbors. The pairwise different
condition is easily recovered, in case it is necessary, by removing the cubes
in the chain between the repeated cubes.

Remark. It is well known that if Ω satisfies the Boman chain condition
with a distinguished cube Qa, then we can take as a distinguished cube any
cube in the Whitney decomposition. However, the constant λ in (5.1) may
vary.

In order to define an appropriate tree covering of Ω, we have to prove
that John domains satisfy the new condition stated below which is richer
than the Boman chain condition.

Definition 5.3. Let Ω ⊂ Rn be a bounded domain. We say that Ω
satisfies the Boman tree condition if there exists a Whitney decomposition
{Qt}t∈Γ , where Γ has a rooted tree structure, that satisfies

(5.2) Qs ⊆ KQt
for any s, t ∈ Γ with s � t. Moreover, if two vertices t and s are adjacent
in Γ then Qt and Qs must be (n− 1)-neighbors.

Lemma 5.4. The Boman chain condition and the Boman tree condition
are equivalent.
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The reverse of the equivalence in Lemma 5.4 is obtained by taking Qa as
the distinguished cube, where a is the root of Γ . Thus, given Qκ with κ ∈ Γ ,
we have Qs ⊆ KQt for all a � t � s � κ. Observe that in this case the chain
starts at Qa, instead of Qκ as in (5.1), and ends at Qκ. The other implication
is shown in the Appendix and follows some ideas by A. A. Vasil’eva [V].

We can conclude, from Lemmas 5.2 and 5.4, that Definition 5.3 charac-
terizes bounded John domains in Rn. Regarding the constants that appear
in (1.2) and (5.2), it is not clear in general what is the relation between
them. In order to have a better understanding of the geometric constant K
we exhibit two domains in R2 where the constants CJ and K can be easily
estimated. The first example is the rectangle Ω1 = (−m2,m2) × (0, 1), for
m � 1, where CJ ≈ K ≈ m2. The second example, Ω2, is obtained by
twisting Ω1 as shown in Figure 1. In this case, CJ is still comparable to m2

while K ≈ m.

Mm-m

Fig. 1. Twisted rectangle

Let Ω ⊂ Rn be a bounded John domain. Then, from Lemmas 5.2 and
5.4, we know that there exists a Whitney decomposition {Qt}t∈Γ with all
the properties of Definition 5.3. Thus, we define a covering {Ωt}t∈Γ of Ω by

(5.3) Ωt := 17
16Q

◦
t ,

where 17
16Q

◦
t denotes the open cube with the same center as Qt and side

length 17
16 times the side length of Qt.

Corollary 5.5. The covering {Ωt}t∈Γ of the bounded John domain Ω
defined in (5.3) is a tree covering with

diam(Ωt) ≤ Cn diam(Bt),(5.4)

diam
(⋃
s�t

Ωs

)
≤ K diam(Ωt),(5.5)

for any t ∈ Γ (t 6= a in the first inequality), where K is the constant of (5.2).
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Moreover, the overlap condition (2.1) is satisfied with N = 12n, each Ωt
intersects a finite number of Ωs with s ∈ Γ , and

(5.6)
1

Cn
diam(Ωt) ≤ ρ(Ωt, ∂Ω) ≤ Cn diam(Ωt).

Proof. Regarding (5.5), observe that (5.2) is also valid for the cubes in
{Ωt}t∈Γ as we are dilating the cubes in {Qt}t∈Γ by the same factor. Thus,

Ωs ⊆ KΩt
for any t, s ∈ Γ with t � s, and we obtain (5.5). The rest is a straightforward
calculation except the existence of the pairwise disjoint collection {Bt}t6=a
satisfying (5.4). We know that Qt and Qtp are (n− 1)-neighbors. Thus,
Ft := Qt∩Qtp is an (n−1)-dimensional face of the smaller of the two cubes.
We denote by αt the centroid of Ft. Let us use the distance d1(x, y) :=
max1≤i≤n |xi − yi|, which is more convenient than d(x, y) =

√∑
i(xi − yi)2

in this context. Moreover, we use the side length of Qt, denoted by l(Qt),
instead of diam(Qt). Thus, using the third condition in the definition of
Whitney decomposition, it can be seen that

d1(αt, αs) ≥ 1
8 l(Qt)

for all s ∈ Γ \ {a, t}. Thus, if we define Bt as the open cube with center at
αt and side length l(Qt)/8, we obtain a collection of pairwise disjoint cubes.
However, it is also required that Bt ⊂ Ωt ∩Ωtp . Therefore, we take Bt with
length side equal to l(Qt)/64 which satisfies the required conditions. Then,
(5.4) holds with Cn = 64.

The next lemma will be used to prove the weighted estimate for the
P0-orthogonal decomposition that appears in Theorem 3.2.

Lemma 5.6. Let Ω ⊂ Rn be a bounded John domain, {Ωt}t∈Γ the tree
covering defined in (5.3), and β ≥ 0. Then the operator T defined in (4.1)
and subordinate to {Ωt}t∈Γ is continuous from Lq(Ω, ρ−qβ) to itself, where
ρ is the distance to the boundary of Ω. Moreover, its norm is bounded by

‖T‖L→L ≤ Cβn
(
qN

q − 1

)1/q

Kβ,

where L denotes Lq(Ω, ρ−qβ). The constant K is the one in (5.2) and N=12n.

It can be seen, after multiplying by an appropriate constant, that the
Hardy–Littlewood maximal operator pointwise bounds the Hardy type op-
erator T defined by using the tree covering introduced in (5.3). Thus T is
continuous from Lp(Ω,ωp) to itself if ωp belongs to the Ap Muckenhoupt
class. However, negative powers of the distance to ∂Ω do not belong to this
class if the absolute value of the power is sufficiently large. Thus, we have
to prove the weighted continuity of T in a different way.
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Proof of Lemma 5.6. Given g ∈ Lq(Ω, ρ−qβ) we have

�

Ω

|Tg(x)|qρ−qβ(x) dx =
�

Ω

ρ−qβ(x)

∣∣∣∣ ∑
a6=t∈Γ

χt(x)

|Wt|

�

Wt

|g(y)| dy
∣∣∣∣q dx

=
�

Ω

ρ−qβ(x)

∣∣∣∣ ∑
a6=t∈Γ

χt(x)

|Wt|

�

Wt

|g(y)|ρ−β(y)ρβ(y) dy

∣∣∣∣q dx =: (1).

Now, given y ∈ Wt there exists s � t such that y ∈ Ωs. Thus, it can be
seen that

ρ(y) ≤ Cn diam(Ωs) ≤ CnK diam(Ωt).

Then, using the fact that β is nonnegative we have

ρβ(y) ≤ CβnKβ diam(Ωt)
β ≤ CβnKβρβ(x)

for all x ∈ Bt. Recall that χt is the characteristic function of Bt ⊂ Ωt and
diam(Ωt) is comparable to ρ(Ωt, ∂Ω). Thus,

(1) ≤ Cqβn Kqβ
�

Ω

ρ−qβ(x)

∣∣∣∣ ∑
a6=t∈Γ

χt(x)ρβ(x)

|Wt|

�

Wt

|g(y)|ρ−β(y) dy

∣∣∣∣q dx
= Cqβn Kqβ

�

Ω

∣∣∣∣ ∑
a6=t∈Γ

χt(x)

|Wt|

�

Wt

|g(y)|ρ−β(y) dy

∣∣∣∣q dx
= Cqβn Kqβ

�

Ω

|T (gρ−β)|q dx =: (2).

Finally, gρ−β belongs to Lq(Ω) and T is continuous from Lq(Ω) to itself
(see Lemma 4.3), thus

(2) ≤ Cqβn 2q
qN

q − 1
Kqβ‖g‖q

Lq(Ω,ρ−qβ)
.

Proof of Theorem 1.1. Using Theorem 4.4 we conclude that there exists a
P0-decomposition {gt}t∈Γ of any integrable function g. This decomposition
is subordinate to the tree covering {Ωt}t∈Γ defined in (5.3). Moreover, it
satisfies (4.2), which in this case implies that

|gt(x)| ≤ |g(x)|+ CnK
nTg(x)

for any x ∈ Ωt with t ∈ Γ . Thus, by a straightforward calculation we have
�

Ωt

|gt(x)|qρ−qβ(x) dx

≤ 2q−1
( �

Ωt

|g(x)|qρ−qβ(x) dx+ CqnK
qn

�

Ωt

|Tg(x)|qρ−qβ(x) dx
)
.
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Next, by using the bound on the overlap and Lemma 5.6, we have the
estimate required in Theorem 3.2:∑

t∈Γ
‖gt‖qLq(Ωt,ρ−qβ)

≤ 2q−1N(‖g‖q
Lq(Ω,ρ−qβ)

+ cqnK
qn‖Tg‖q

Lq(Ω,ρ−qβ)
)

≤ 2q−1N

(
1 + cqnK

qn

(
Cqβn 2q

qN

q − 1

)
Kqβ

)
‖g‖q

Lq(Ω,ρ−qβ)
.

Moreover, consistently with the notation used in Theorem 3.2, we have

C0 = Cn,p,βK
n+β.

Finally, we show the validity of the Korn inequality (3.2) on Ωt, with
ω = ρβ, with a constant Cp,n independent of t ∈ Γ . Using the fact that the
distance from Ωt to the boundary of Ω is comparable to diam(Ωt), it is easy
to show that the weight is comparable to a constant over Ωt, indeed,

1

Cn
diam(Ωt) ≤ ρ(x) ≤ Cn diam(Ωt)

for all x ∈ Ωt. Moreover, the Korn inequality (3.2) with ω = 1 is valid on
any cube Ωt with uniform constant. Thus,

inf
ε(w)=0

‖D(v −w)‖Lp(Ωt,ρpβ) ≤ C
β
n diam(Ωt)

β inf
ε(w)=0

‖D(v −w)‖Lp(Ωt)

≤ Cβn diam(Ωt)
βCp,n‖ε(v)‖Lp(Ωt)

≤ CβnCp,n‖ε(v)‖Lp(Ωt,ρpβ),

with a constant C1 = Cp,n,β. Thus, the validity of (1.3) and the estimate of
its constant follow from Theorem 3.2 and Remark 3.3.

5.1. Weighted solutions of divergence problem on John do-
mains. In this subsection, we basically combine [L, Theorem 3.2] and Lem-
ma 5.4 to show the existence of a weighted solution of div u = f on John do-
mains. This problem is basic for the theoretical and numerical analysis of the
Stokes equations in Ω and has been widely studied (see [G, ADM, Bog, D,

DMRT, L] and references therein). The solutions belong to W 1,q
0 (Ω, ρ−qβ)n

which is defined as the closure of C∞0 (Ω)n in the norm

‖u‖
W 1,q

0 (Ω,ρ−qβ)n := ‖Du‖Lq(Ω,ρ−qβ)n×n .

Theorem 5.7. Let Ω ⊂ Rn be a bounded John domain with n ≥ 2, and
let 1 < q < ∞ and β ∈ R≥0. Given f ∈ Lq(Ω, ρ−qβ), with

	
Ω f = 0, there

exists a solution u ∈W 1,q
0 (Ω, ρ−qβ)n of div u = f that satisfies

‖Du‖Lq(Ω,ρ−qβ) ≤ Cn,q,βKn+β‖f‖Lq(Ω,ρ−qβ),
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where ρ(x) is the distance to the boundary of Ω and K is the constant
of (5.2).

Proof. Let us show that the hypotheses (a)–(f) of [L, Theorem 3.2] are
fulfilled. First, notice that our p and q are swapped in [L]. We also use a
different notation for the definition of weighted spaces. Let {Ωt}t∈Γ be a tree
covering as in Lemma 5.5. Being a tree covering, it satisfies (b). {Ωt}t∈Γ is
obtained by expanding a Whitney decomposition, which implies (a) and (c),
with N = 12n. Condition (d) involves a weight ω which depends on the
geometry of Ω:

ω(x) :=

{
|Bt|/|Wt| if x ∈ Bt for some t ∈ Γ , t 6= a,

1 otherwise.

Now, from (5.5) it follows that ω(x) ≥ 1/(CnK
n) for any x ∈ Ω. Thus,

by taking ω̄ := 1 and M1 := CnK
n we have (d). In order to prove (e) we

define ω̂ := ρ−β, and use the fact that ρ is comparable to diam(Ωt) over Ωt
(see (5.6)). Thus, as there are solutions for the divergence problem on cubes
with uniform constant, it follows that given t ∈ Γ and g ∈ Lq(Ωt, ρ

−qβ),

with vanishing mean value, there exists a solution v ∈ W 1,q
0 (Ωt, ρ

−qβ)n of
div v = g with

‖Dv‖Lq(Ωt,ρ−qβ) ≤ Cn,β‖g‖Lq(Ωt,ρ−qβ).
Thus, M2 is a constant that depends only on n and β.

Finally, (f) follows from Lemma 5.6 with MT = Cn,q,βK
β.

The estimate of the constant follows from [L, Theorem 3.2].

Appendix A. Boman chain implies Boman tree condition. This
section is devoted to proving Lemma 5.4.

According to the previous section, {Qt}t∈Γ denotes a Whitney decompo-
sition of a bounded domain Ω ⊂ Rn that satisfies the Boman condition (5.1).
The center cube Qa can be arbitrarily chosen. Thus, we take one with the
biggest size. Moreover, without loss of generality and in order to simplify the
notation we are going to assume that its side length is 1. For any s ∈ Γ , we
denote by ls the side length of Qs. In addition, the elements in the covering
are dyadic cubes, thus ls = 2−ms , where ms is a nonnegative integer, which
may also be denoted by m(Qs). For example, m(Qa) = ma = 0.

Let G = (V,E) be a connected graph. Given v, v′ ∈ V we define the
distance k(v, v′) as the minimal j ∈ N0 such that there exists a simple path
(v0, v1, . . . , vj) of length j that connects v to v′. Namely, v0 = v, vj = v′, and
the vertices vi and vi+1 are adjacent. The function k depends on V and E.

Lemma A.1. Let G = (V,E) be a connected graph with a distinguished
vertex v∗ ∈ V . The graph also satisfies k(v, v∗) ≤ k for all v ∈ V , where k is
a fixed value in N. Then there exists a subgraph G̃ = (V, Ẽ) with the same
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vertices which is a rooted tree with root v∗ such that k̃(v, v∗) ≤ k for all
v ∈ V , where k̃ is the distance for the new graph G̃.

Proof. The rooted tree G̃ is obtained by eliminating edges from E by
using an inductive argument. Indeed, we are going to define a collection
Gi := (Vi, Ei) of subgraphs of G for each 0 ≤ i ≤ k. The set Vi of vertices
has the vertices v ∈ G such that k(v, v∗) ≤ i. If ki denotes the distance
between vertices in Gi, we define Ei inductively so that Gi is a subtree of
Gi+1 and k(v, v∗) = ki(v, v∗) for all v ∈ Vi.

Thus, we define V0 = {v∗} and E0 = ∅. Next, given 1 ≤ i ≤ k, the
process consists in taking exactly one edge that joins each vertex in Vi \Vi−1
to Vi−1 and eliminating the other edges.

Lemma A.2. Let {Qt}t∈Γ be a Whitney decomposition of Ω satisfying
condition (5.1). Then there exists a tree structure in Γ such that for all
t, t′ ∈ Γ with t′ � t, we have

(A.1) k(t, t′) ≤ l∗(mt′ −mt) + k∗,

where

l∗ := (1 + λ2n)(2 + log2(λ)) + 1

k∗ := (1 + λ2n)(2 + log2(λ)) + l∗(1 + log2(λ)).

The constant λ is the one introduced in (5.1). In addition, if two vertices s
and t are adjacent, then Qs and Qt must be neighbors.

Proof. We use an inductive argument. As mentioned before, we are as-
suming that Qa has maximal side length 1. Thus, we will define a collection
of rooted trees Gm = (Γm, Em) for every m ∈ N≥−1 such that Gm is a
subgraph of Gm+1 (i.e. Γm ⊆ Γm+1 and Em ⊆ Em+1) and all of them are
subgraphs of GΩ = (Γ,EΩ), where two vertices t, t′ ∈ Γ are adjacent in GΩ
if and only if Qt and Qt′ are neighbors. Moreover,

⋃
m Γm = Γ .

Our inductive hypothesis is:

(h1) Γm contains all the cubes Qt with mt = m.
(h2) mt ≤ m+ 1 + log2(λ) for all t ∈ Γm.
(h3) If t, t′ ∈ Γm \ Γm−1 with t′ � t, then k(t, t′) ≤ λ2n.
(h4) Condition (A.1) is satisfied for any t, t′ ∈ Γm.

Let us start by defining G−1 which has Γ−1 := {a} and E−1 := ∅. It can
be easily checked that G−1 is a subtree of GΩ that satisfies (h1) to (h4).
So, suppose we have a collection G−1, G0, . . . , Gm−1 for m ≥ 0 with all the
properties mentioned above. To construct Gm, let us start by taking all
t ∈ Γ \ Γm−1 with mt = m. In case there is no t with these properties we
simply define Gm := Gm−1. Thus, for each of those indices with mt = m
there exists a chain of cubes satisfying (5.1) that connects Qt to Qa via
adjacent cubes. However, we are going to consider just the first part of this
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chain which joins Qt with a cube Qs with s ∈ Γm−1. This element s is the
first one with this property (considering the order in the chain). Denote this
portion of the original chain as Qt,1, . . . , Qt,r, Qt,r+1, with Qt,1 = Qt and
Qt,r+1 = Qs. Thus Qt,r is a cube with t /∈ Γm−1. The number r = r(t) of
cubes is bounded by r ≤ λ2n. To prove this, observe that all the cubes in
the chain intersect each other in a set with Lebesgue measure zero, thus

r∑
j=1

|Qt,j | ≤ λn|Qt,r|.

Since Qt,r has t /∈ Γm−1, using (h1) we know that m(Qt,r) ≥ m and the
right hand side above satisfies

λn|Qt,r| = λn2−nm(Qt,r) ≤ λn2−nm.

Now, Qt ⊆ λQt,j for all 1 ≤ j ≤ r. Then using mt = m we have

rλ−n2−nm ≤
r∑
j=1

|Qt,j |.

Thus, r ≤ λ2n.

Now, we define an auxiliary graph G = (V,E), where the set V has a
vertex v∗ 6∈ Γ . The rest of the vertices are the indices in Γ \Γm of the cubes
in Qt,1, . . . , Qt,r for all Qt with mt = m. Regarding the set E, we join two
vertices in V by an edge if they are the indices of two consecutive cubes in
a chain Qt,1, . . . , Qt,r, or one is v∗ and the other is the index of the tail cube
Qt,r in a chain Qt,1, . . . , Qt,r. Next, using Lemma A.1 we find that removing

some edges from G it is possible to obtain a rooted tree G̃ = (V, Ẽ) with
root v∗ such that the length of each chain connecting the vertices to v∗ does
not exceed λ2n. Finally, in order to construct Γm, we cut off the subtrees
added to the artificial vertex v∗ and add them to Γm−1, specifically to the
indices of the cubes Qt,r+1 in the tail of chain. This procedure defines a
rooted tree Gm = (Γm, Em) with root a that contains Gm−1 as a subgraph.
Once we have defined Gm = (Γm, Em), it remains to prove that Gm satisfies
(h1) to (h4).

Property (h1) follows by construction.

Next, to prove (h2) it is sufficient to consider the case of s ∈ Γm \Γm−1.
By construction λQs contains a cube Qt with mt = m. Consequently,
λ diam(Qs) ≥ diam(Qt), and after straightforward calculations we obtain
ms ≤ m+ log2(λ).

Condition (h3) also follows by construction. We only have to show the
validity of (h4) in Γm. For this, we use the inductive hypothesis (h1)–(h4)
on Γm−1, and the already proven (h1)–(h3) on Γm. Now, given t, t′ ∈ Γm with
t � t′ we have to show that (A.1) holds. We may assume that t′ ∈ Γm\Γm−1,
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otherwise (A.1) follows by using the inductive hypothesis. Thus, mt′ ≥ m.
We split the proof into two cases, mt ≥ m and mt ≤ m− 1.

Suppose mt ≥ m. If t ∈ Γm−j for some 0 ≤ j ≤ m + 1, then j ≤
1 + log2(λ). Indeed, by (h2),

m ≤ mt ≤ m− j + 1 + log2(λ).

Moreover, let m−j ≤ i ≤ m. Then, using (h3) we conclude that the number
of indices s ∈ Γi \ Γi−1 such that t � s � t′ does not exceed 1 + λ2n. Thus,

(A.2) k(t, t′) ≤ (1 + λ2n)(2 + log2(λ)).

Now, using (h1) and (h2) we have

mt′ −mt ≥ m−mt ≥ m−m− 1− log2(λ) = −1− log2(λ).

Thus, by (A.2),

k(t, t′) ≤ k∗ − l∗(1 + log2(λ)) ≤ l∗(mt′ −mt) + k∗.

Now suppose mt ≤ m − 1. We know that mt′ ≥ m, thus there exist
two consecutive vertices t1, t2 such that t � t1 ≺ t2 � t′, mt1 ≤ m − 1 and
mt2 ≥ m. Now, t2 and t′ are as in the previous situation, so we use (A.2) to
obtain

k(t2, t
′) ≤ (1 + λ2n)(2 + log2(λ)).

Note that from (h1) we see that t and t1 belong to Γm−1, and the inductive
hypothesis yields

k(t, t′) = k(t, t1) + k(t1, t2) + k(t2, t
′)

≤ l∗(mt1 −mt) + k∗ + 1 + (1 + λ2n)(2 + log2(λ))

= l∗(mt1 −mt) + k∗ + l∗ ≤ l∗(mt′ −mt) + k∗,

concluding the proof.

Proof of Lemma 5.4. This result is a corollary of Lemma A.2. Indeed,
given s, t ∈ Γ with t � s, we denote by αt the center of Qt and take
an arbitrary y ∈ Qs. Since two adjacent vertices in Γ are the indices of
neighbor cubes, we have

dist(αt, y) ≤
∑
t�t′�s

diam(Qt′) =
√
n
∑
t�t′�s

2−mt′

=
√
n 2−mt

∑
t�t′�s

2−(mt′−mt) =: (I).

Next, from (A.1),

(I) ≤
√
n 2−mt

∑
t�t′�s

2−
1
l∗
(k(t,t′)−k∗) =

√
n 2−mt2k∗/l∗

k(t,s)∑
i=0

(2−1/l∗)i.
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Finally, the following constant fulfills (5.2):

K := 21+k∗/l∗
√
n
∞∑
i=0

(2−1/l∗)i.
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erator and Poincaré inequalities on arbitrary bounded domains, Complex Var.
Elliptic Equations 55 (2010), 795–816.

[F] K. O. Friedrichs, On the boundary-value problems of the theory of elasticity and
Korn’s inequality, Ann. of Math. (2) 48 (1947), 441–471.

[G] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes
Equations, Springer Monogr. Math., Springer, New York, 2011.

http://dx.doi.org/10.1016/j.aim.2005.09.004
http://dx.doi.org/10.1002/mma.3170
http://dx.doi.org/10.1512/iumj.2009.58.3664
http://dx.doi.org/10.4310/MRL.2010.v17.n5.a15
http://dx.doi.org/10.2140/pjm.2011.250.67
http://dx.doi.org/10.1007/s00205-015-0845-2
http://dx.doi.org/10.1007/s00526-005-0371-4
http://dx.doi.org/10.5186/aasfm.2010.3506
http://dx.doi.org/10.1080/17476931003786659
http://dx.doi.org/10.2307/1969180
http://dx.doi.org/10.1007/978-0-387-09620-9


Weighted Korn inequalities 23

[H] C. O. Horgan, Korn’s inequalities and their applications in continuum mechanics,
SIAM Rev. 37 (1995), 491–511.

[HP] C. O. Horgan and L. E. Payne, On inequalities of Korn, Friedrichs and
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