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Abstract. Let Ω ⊂ Rn be a bounded domain that can be written as Ω =
⋃
t Ωt, where

{Ωt}t∈Γ is a countable collection of domains with certain properties. In this work, we develop
a technique to decompose a function f ∈ L1(Ω), with vanishing mean value, into the sum of

a collection of functions {ft− f̃t}t∈Γ subordinated to {Ωt}t∈Γ such that Supp (ft− f̃t) ⊂ Ωt
and

∫
ft − f̃t = 0. As an application, we use this decomposition to prove the existence of

a solution in weighted Sobolev spaces of the divergence problem divu = f and the well-
posedness of the Stokes equations on Hölder-α domains and some other domains with an
external cusp arbitrarily narrow. We also consider arbitrary bounded domains. The weights
used in each case depend on the type of domain.

1. Introduction

In this paper we show a kind of atomic decomposition for an integral function f ∈ L1(Ω)
if Ω is a bounded domain which can be written as the union of a countable collection of
domains {Ωt}t∈Γ with certain properties. This result is based on a decomposition developed
by Bogovskii in [5], where Γ is finite. The goal of this result is to write a function f with∫
f = 0 as the sum of a collection of functions {ft − f̃t}t∈Γ such that Supp{ft − f̃t} ⊂ Ωt

and
∫

Ωt
ft − f̃t = 0. As Bogovskii did in his paper we use this decomposition to study the

existence of solutions of the divergence problem, and posteriorly the well-posedness of the
Stokes equations.

Let us introduce the divergence problem for a bounded domain Ω ⊂ Rn. Given f ∈ Lp(Ω),
with vanishing mean value and 1 < p <∞, the divergence problem deals with the existence
of a solution u in the Sobolev space W 1,p

0 (Ω)n of divu = f satisfying

‖Du‖Lp(Ω) ≤ CΩ‖f‖Lp(Ω), (1.1)

where Du is the differential matrix of u. This problem has been widely studied and it
has many applications, for example, in the particular case p = 2, it is fundamental for the
variational analysis of the Stokes equations (see [13]). It is also well known for its relation
with some inequalities such as Korn and Sobolev Poincaré.

Consequently, several methods have been developed to prove the existence of a solution
of divu = f satisfying (1.1) under different assumptions on the domain (see for example [3],
[4], [5], [6], [11], [18]).

On the other hand, this result fails if Ω has an external cusp or arbitrarily narrow “cor-
ridors”, see for example [2] and [12]. However, the existence of solutions of the divergence
problem holds in some of these irregular domains if we consider weighted Sobolev spaces with
an estimate weaker than (1.1). A similar analysis can be done for its related results. Since
the non-existence of standard solutions arises because of the bad behavior of the boundary, it
seems natural to work with weights involving the distance to the boundary of Ω or a subset
of it. The following are some papers considering the divergence problem or related results in
weighted Sobolev spaces [1], [6], [8], [9] and [19].
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Another point of interest is the characterization of the domains where there exists a stan-
dard solution of the divergence equation. This problem has been completely solved if Ω is
a bounded planar simply connected domain where it was proved that there exists a solution
u ∈ W 1,p

0 (Ω)2 of divu = f satisfying (1.1) if and only if Ω is a John domain. The case
1 < p < 2 was published in [3] while 2 ≤ p <∞ was recently shown in [14].

As we mentioned before there are many different approaches to this problem. In the present
paper, as it was done in [6] and [10], we use a decomposition of the function f in divu = f
to generalize results valid on simple domains, such as rectangles or star-shaped domains, to
more general cases.

The paper is organized in the following way: In Section 2, we include some notations and
preliminary results. In Section 3, we show the main result of this paper, a decomposition
technique for integrable functions defined over a bounded domain Ω which is written as the
union of a collection of subdomains {Ωt}t∈Γ with some properties. The set Γ is required
to have a certain partial order structure. In the following sections we include three different
applications of the decomposition developed in Section 3. These sections can be independently
read. In section 4, we show the existence of a weighted right inverse of the divergence operator
on arbitrary bounded domains. In Sections 5 and 6, we prove the existence of a solution of
the divergence problem and the well-posedness of the Stokes equations on some domains with
an external cusp arbitrarily narrow and on bounded Hölder-α domains in Rn. The weights
in these two final sections are more specific than the one used in Section 4. More precisely,
the weights are related to the distance to the cusp and to the distance to the boundary of
the domain respectively.

2. Preliminaries and notations

Let Ω ⊂ Rn be a bounded domain. Given a measurable positive function ω : Ω→ R>0 we
denote with Lp(Ω, ω) the weighted space with norm

‖f‖Lp(Ω,ω) = ‖fω‖Lp(Ω),

and with W 1,p
0 (Ω, ω) the weighted Sobolev space defined as the closure of C∞0 (Ω) with norm

‖u‖
W 1,p

0 (Ω,ω)
= ‖Du‖Lp(Ω,ω),

where Du is the differential matrix of u. Observe that the seminorm ‖Du‖ is a norm in the
trace zero space.

We say that Ω satisfies (div)p, for 1 < p < ∞, with constant CΩ if for any f ∈ Lp0(Ω) :=

{g ∈ Lp(Ω) : g has vanishing mean value } there is a solution u ∈ W 1,p
0 (Ω)n of divu = f

satisfying (1.1). We also use CA to denote a constant depending on A, where A is not
necessarily a domain.

In the next lemma we compare CΩ with CΩ̂, where Ω is a domain obtained by applying an

affine function to a domain Ω̂ satisfying (div)p. This result is standard and the proof uses the

Piola transform. Before stating with the lemma and given an invertible matrix B ∈ Rn×n, let
us recall the conjugate operator TB : Rn×n → Rn×n defined by TB(A) = BAB−1. Moreover,
let us consider its norm

‖TB‖ := sup
A 6=0

‖TB(A)‖p
‖A‖p

,

where ‖A‖p =
(∑

1≤i,j≤n |Ai,j |p
)1/p

.

Lemma 2.1. Let Ω̂ ⊂ Rn be a domain satisfying (div )p and F : Rn → Rn an affine function

defined by F (x̂) = Bx̂ + b, where B ∈ Rn×n is an invertible matrix and b ∈ Rn. Then,

Ω = F (Ω̂) satisfies (div)p with a constant CΩ bounded by

CΩ ≤ ‖TB‖CΩ̂.
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In particular, CΩ = CΩ̂ if B = λI, where I is the identity matrix and λ 6= 0 is a real number.

Proof. In order to simplify the notation we assume that all the vectors are in Rn×1. Given
f ∈ Lp0(Ω), the function ĝ(x̂) = f(F (x̂)) belongs to Lp0(Ω̂). Thus, we define the vector field

u(x) := Bv̂(F−1(x)), where v̂ ∈W 1,p
0 (Ω̂)n is a solution of div v̂ = ĝ, with

‖v̂‖
W 1,p

0 (Ω̂)
≤ CΩ̂‖ĝ‖Lp(Ω̂).

It can be seen that the differential matrix of u is Du(x) = BDv̂(F−1(x))B−1, and as the
trace is invariant under conjugation we can assert that divu(x) = div v̂(F−1(x)) = f(x). On
the other hand, using change of variables it can be seen that

‖Du‖Lp(Ω) ≤ ‖TB‖ det(B)1/p‖Dv̂‖Lp(Ω̂)

≤ ‖TB‖ det(B)1/pCΩ̂‖ĝ‖Lp(Ω̂) = ‖TB‖CΩ̂‖f‖Lp(Ω).

�

As we mentioned before an important application of the existence of a right inverse of the
divergence operator is the well-posedness of the Stokes equations, given by:

−∆u +∇p = g in Ω

divu = h in Ω

u = 0 on ∂Ω.

(2.2)

For a bounded Lipschitz domain Ω ⊂ Rn (or more generally a John domain [3]), it is known
that, if g ∈ H−1(Ω)n, the dual space of H1

0 (Ω)n, and h ∈ L2(Ω) with vanishing mean value,
there exists a unique variational solution (u, p) in H1

0 (Ω)n × L2(Ω). Moreover, this solution
satisfies the a priori estimate:

‖Du‖L2(Ω) + ‖p‖L2(Ω) ≤ C
(
‖g‖H−1(Ω) + ‖h‖L2(Ω)

)
,

where the constant C depends only on Ω .
On the other hand, it is known that this result fails in general for domains with external

cusps. However, it was proved in [9] that the well-posedness of the incompressible Stokes
equations (h = 0 in (2.2)) is valid in weighted Sobolev spaces for an arbitrary bounded
domain Ω if there exists a standard solution of divu = f , where f is in a weighted Sobolev
spaces. This result is stated bellow.

Theorem. Let ω ∈ L1(Ω) be a positive function. Assume that for any f ∈ L2(Ω, ω−1/2),
with vanishing mean value, there exists u ∈ H1

0 (Ω)n such that divu = f and

‖Du‖L2(Ω) ≤ C‖f‖L2(Ω,ω−1/2),

with a constant C depending only on Ω and ω. Then, for any g ∈ H−1(Ω)n, there exists a

unique (u, p) ∈ H1
0 (Ω)n × L2(Ω, ω1/2), with

∫
Ω pω = 0, incompressible solution of the Stokes

problem (2.2). Moreover,

‖Du‖L2(Ω) + ‖p‖L2(Ω,ω1/2) ≤ C‖g‖H−1(Ω),

where C depends only on Ω and ω.

3. A decomposition technique for integrable functions

We start this section with an example of Bogovskii’s decomposition when Ω is a domain
written as the union of a collection of subdomains {Ωi}0≤i≤2. We present the example using
our notation. Let f ∈ Lp(Ω) be a function with vanishing mean value. Thus, using a partition
of the unity {φi}0≤i≤2 subordinated to {Ωi}0≤i≤2 we can write f as:

f = f0 + f1 + f2 = fφ0 + fφ1 + fφ2.
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Now,

f = f0 +

(
f1 +

χB2

|B2|

∫
Ω2

f2

)
+

(
f2 −

χB2

|B2|

∫
Ω2

f2

)
︸ ︷︷ ︸

f2−f̃2

,

where B2 = Ω2 ∩Ω1. Note that the function f2 − f̃2 has its support in Ω2 and
∫
f2 − f̃2 = 0.

Finally, we repeat the process with the first two functions. Thus, if B1 = Ω1 ∩ Ω0 we have
that

f =

f0−f̃0︷ ︸︸ ︷(
f0 +

χB1

|B1|

∫
Ω1∪Ω2

f1 + f2

)
(3.3)

+

(
f1 +

χB2

|B2|

∫
Ω2

f2 −
χB1

|B1|

∫
Ω1∪Ω2

f1 + f2

)
︸ ︷︷ ︸

f1−f̃1

+

(
f2 −

χB2

|B2|

∫
Ω2

f2

)
︸ ︷︷ ︸

f2−f̃2

,

obtaining the claimed decomposition. Note that we have used the vanishing mean value
of f only to prove that f0 − f̃0 integrates zero. If we do not assume any other thing but
integrability, we have that

∫
fi − f̃i = 0 if i 6= 0 and

∫
f0 − f̃0 =

∫
f .

In this work we extend the decomposition shown in (3.3) when Ω is the union of a collection
of subdomains {Ωt}t∈Γ, where Γ is a partial ordered countable set instead of a totally ordered
finite set. In fact, Γ is a rooted tree and the partial order is inherited from the graph structure.

Let us recall some definitions. A rooted tree is a connected graph in which any two
vertices are connected by exactly one simple path, and a root is simply a distinguished
vertex a ∈ Γ. For these graphs it is possible to define a partial order � as s � t if and only
if the unique path connecting t with the root a passes through s. Moreover, the height or
level of any t ∈ Γ is the number of vertices in {s ∈ Γ : s � t with s 6= t}. The parent of a
vertex t ∈ Γ is the vertex s satisfying that s � t and its height is one unit smaller than the
height of t. We denote the parent of t by tp. It can be seen that each t ∈ Γ different from
the root has a unique parent, but several elements on Γ could have the same parent.

3.1. A “tree” of domains. Our decomposition for functions in L1(Ω) is subordinated to a
given decomposition of Ω, which has to satisfy the properties stated below. Thus, let {Ωt}t∈Γ

be a countable collection of subdomains of Ω, where Γ is a tree with root a, that satisfies the
following properties:

(a) χΩ(x) ≤
∑
t∈Γ

χΩt(x) ≤ NχΩ(x), for almost every x ∈ Ω.

(b) For any t ∈ Γ different from the root there exists a set Bt ⊆ Ωt ∩ Ωtp with no trivial
Lebesgue measure. In addition, the collection {Bt}t6=a is pairwise disjoint.

Finally, given t ∈ Γ, we define Wt =
⋃
s�t

Ωs and we denote the characteristic function of Bt

by χt, if t 6= a.

3.2. A decomposition on a “tree” of domains. Let {φt}t∈Γ be a partition of the unity
subordinated to {Ωt}t∈Γ. Thus, f can be decomposed into f =

∑
t∈Γ ft, where ft = fφt, and∑

t∈Γ

‖ft‖pLp(Ωt)
≤ N‖f‖pLp(Ω).

Thus, similarly to (3.3), we define f̃t for t ∈ Γ as

f̃t(x) :=
χt(x)

|Bt|

∫
Wt

∑
k�t

fk −
∑
s: sp=t

χs(x)

|Bs|

∫
Ws

∑
k�s

fk, (3.4)
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where the second sum is indexed over all the s ∈ Γ such that t is the parent of s. In the
particular case when t is the root of Γ, formula (3.4) means

f̃a(x) = −
∑

s: sp=a

χs(x)

|Bs|

∫
Ws

∑
k�s

fk.

In the next theorem we prove that f can be written as
∑

t∈Γ ft − f̃t, and some properties
of this decomposition, but before that let us define an important operator and show its
continuity. Let T : Lp(Ω)→ Lp(Ω) be the operator defined by

Tf(x) :=
∑
a6=t∈Γ

χt(x)

|Wt|

∫
Wt

|f |. (3.5)

Lemma 3.1. The operator T : Lp(Ω)→ Lp(Ω) defined in (3.5) is weak (1, 1) continuous and
strong (p, p) continuous for 1 < p ≤ ∞ with

‖T‖Lp→Lp ≤ 2

(
pN

p− 1

)1/p

.

Proof. We prove first that T is strong (∞,∞) continuous and weak (1, 1) continuous. Then,
using an interpolation theorem, we extend the result to all 1 < p <∞.
T is an average of f when it is not zero, thus by a straightforward calculation, it can be

proved that T is continuous from L∞ to L∞, with norm ‖T‖L∞→L∞ ≤ 1. In order to prove
the weak (1, 1) continuity, and given λ > 0, we define the subset of minimal vertices Γ0 ⊆ Γ
as

Γ0 :=

{
t ∈ Γ :

1

|Wt|

∫
Wt

|f | > λ and
1

|Ws|

∫
Ws

|f | ≤ λ for all s � t different from t

}
.

Thus,

|{x ∈ Ω : Tf(x) > λ}| ≤
∑
t∈Γ0

|Wt|

<
1

λ

∑
t∈Γ0

∫
Wt

|f | ≤ N

λ
‖f‖L1(Ω),

where N was defined in (a) on page 4 and it controls the overlapping of the collection {Ωt}.
Thus, T is weak (1, 1) continuous with norm lesser than or equal to N .

Finally, using Marcinkiewicz interpolation (see Theorem 2.4 on [7]) T is strong (p, p) con-

tinuous, and its norm is lesser than 2

(
pN

p− 1

)1/p

. �

Now, we define the weight ω : Ω→ R+ by

ω(x) :=


|Bt|
|Wt|

if x ∈ Bt for some t ∈ Γ, t 6= a

1 otherwise.

(3.6)

Let us observe that the collection {Bt}t∈Γ is pairwise disjoint, thus the weight is well
defined. Moreover, 0 < ω(x) ≤ 1 for all x ∈ Ω.

Theorem 3.1 (Decomposition technique). Let Ω ⊂ Rn be a bounded domain for which there
exists a decomposition {Ωt}t∈Γ that fulfills (a) and (b). Given f ∈ L1(Ω), and 1 < p <∞, the
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decomposition f =
∑

t∈Γ ft−f̃t defined on (3.4) satisfies that Supp(ft−f̃t) ⊂ Ωt,
∫

Ωt
ft−f̃t = 0

for all t 6= a,
∫

Ωa
fa − f̃a =

∫
Ω f , and∑
t∈Γ

‖ft − f̃t‖pLp(Ωt,ω) ≤ C1‖f‖pLp(Ω), (3.7)

where C1 = 2pN

(
1 +

2p+1p

p− 1

)
.

In addition, if ω̂1, ω̂2 : Ω → R>0 are two weights satisfying that Lp(Ω, ω̂2) ⊂ L1(Ω), and
the identity operator I and T are continuous from Lp(Ω, ω̂2) to Lp(Ω, ω̂1) with norms MI and
MT , the decomposition mentioned above also satisfies the following estimate∑

t∈Γ

‖ft − f̃t‖pLp(Ωt,ωω̂1) ≤ C2‖f‖pLp(Ω,ω̂2), (3.8)

where C2 = 2p(NMp
I + 2Mp

T ).

Proof. Observe that Bt and all the Bs on the identity (3.4) are included in Ωt, thus it follows

that Supp(ft − f̃t) ⊂ Ωt.

Let us remark that f̃t(x) 6= 0 only if x belongs to Bs for some s ∈ Γ − {a} with t = s or

t = sp. Moreover, given x in Bs it follows that f̃s(x) + f̃sp(x) = 0, concluding that∑
t∈Γ

ft(x)− f̃t(x) =
∑
t∈Γ

ft(x)−
∑
t∈Γ

f̃t(x) = f(x) + 0.

On the other hand, in order to prove the vanishing mean value of ft − f̃t, with t 6= a,∫
Ωt

f̃t =

∫
Wt

∑
k�t

fk −
∑
s: sp=t

∫
Ws

∑
k�s

fk =
∑
k�t

∫
Ω
fk −

∑
k�t
k 6=t

∫
Ω
fk =

∫
Ωt

ft,

obtaining that
∫

Ωt
ft − f̃t = 0. The case t = a follows from∫

Ωa

fa − f̃a =

∫
Ωa

fa +
∑

s: sp=a

∫
Ws

∑
k�s

fk =

∫
Ω
fa +

∑
k 6=a

∫
Ω
fk =

∫
Ω
f.

Let us continue with the proof of (3.8). Thus,∑
t∈Γ

‖ft − f̃t‖pLp(Ωt,ωω̂1) ≤ 2p
∑
t∈Γ

‖ft‖pLp(Ωt,ωω̂1) + 2p
∑
t∈Γ

‖f̃t‖pLp(Ωt,ωω̂1) = (I ′) + (II ′).

Using that 0 ≤ φi, ω ≤ 1 and the overlapping of the collection Ωt is not bigger than N , it
follows that

(I ′) ≤ 2pN‖f‖pLp(Ω,ω̂1) ≤ 2pNMp
I ‖f‖

p
Lp(Ω,ω̂2).

On the other hand, using that the collection {Bt}t6=a is pairwise disjoint, it can be observed
for any t 6= a that

(
|f̃t(x)|ω(x)ω̂1(x)

)p
≤

ω(x)χt(x)

|Bt|

∫
Wt

|f | +
∑
s: sp=t

ω(x)χs(x)

|Bs|

∫
Ws

|f |

p

ω̂1(x)p

=

χt(x)

|Wt|

∫
Wt

|f | +
∑
s: sp=t

χs(x)

|Ws|

∫
Ws

|f |

p

ω̂1(x)p

=

(χt(x)

|Wt|

∫
Wt

|f |
)p

+
∑
s: sp=t

(
χs(x)

|Ws|

∫
Ws

|f |
)p ω̂1(x)p.
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The case t = a is analogous. Hence,∑
t∈Γ

∫
Ωt

(
|f̃t(x)|ω(x)ω̂1(x)

)p
≤ 2

∫
Ω

∑
a6=t∈Γ

(
χt(x)

|Wt|

∫
Wt

|f |
)p

ω̂1(x)p

= 2

∫
Ω

 ∑
a6=t∈Γ

χt(x)

|Wt|

∫
Wt

|f |

p

ω̂1(x)p.

Finally,

(II ′) ≤ 2p+1

∫
Ω

(Tf(x)ω̂1(x))p ≤ 2p+1Mp
T ‖f‖

p
Lp(Ω,ω̂2),

ending the proof of (3.8).
Using the continuity of T proved in Lemma 3.1, it can be seen that (3.7) follows from

(3.8) �

3.3. An application: Divergence problem. In this subsection, we apply Theorem 3.1
to show the existence of a weighted solution of the divergence problem on some bounded
domains Ω ⊂ Rn. In fact, this result can be applied if there exists a collection {Ωt}t∈Γ of
subdomains of Ω verifying (a) and (b) in Subsection 3.1, and the additional four conditions
stated bellow:

(c) For any point x ∈ Ω there exists an open set U containing x such that U ∩Ωt 6= ∅ for
a finite number of Ωt’s (this finite number does not need to be bounded by N).

(d) There exists a weight ω̄ : Ω→ R>0 such that

ess sup
x∈Ωt

ω̄(x) ≤M1 ess inf
x∈Ωt

ω(x),

for all t ∈ Γ, where ω is the weight defined in (3.6) and M1 is independent of t.

In the next two conditions ω̂ : Ω → R>0 is a weight such that Lp(Ω, ω̂) ⊂ L1(Ω), with
1 < p <∞.

(e) Given g ∈ Lp(Ωt, ω̂), with vanishing mean value, there exists a solution v ∈W p
0 (Ωt, ω̂)n

of divv = g with

‖Dv‖Lp(Ωt,ω̂) ≤M2‖g‖Lp(Ωt,ω̂),

for all t ∈ Γ, where the positive constant M2 does not depend on t.
(f) The operator T defined in (3.5) is continuous from Lp(Ω, ω̂) to itself with norm MT .

An example of a collection of subdomains verifying (e) could be {Ωt}t∈Γ such that the
constant CΩt is uniformly bounded (for example, cubes) and the weight ω̂ satisfies that

ess sup
x∈Ωt

ω̂(x) ≤ C ess inf
x∈Ωt

ω̂(x),

where C is independent of t.
Condition (f) is used to include the weight ω̂ in both sides of inequality (3.9). The case

when ω̂ = 1 was proved in general in Lemma 3.1.

Theorem 3.2. Let Ω ⊂ Rn be a bounded domain, ω̂, ω̄ : Ω → R>0 two weights, with
Lp(Ω, ω̂) ⊂ L1(Ω), for 1 < p < ∞, and finally a collection {Ωt}t∈Γ of subdomains of Ω
verifying conditions from (a) to (f) mentioned above. Hence, given f ∈ Lp0(Ω, ω̂) with van-

ishing mean value there exists a solution u ∈W 1,p
0 (Ω, ω̄ω̂)n of divu = f such that

‖Du‖Lp(Ω,ω̄ω̂) ≤ C‖f‖Lp(Ω,ω̂), (3.9)

where

C = 2NM1M2

(
N + 2Mp

T

)1/p
.
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Proof. The collection of subdomains satisfies (a) and (b), and from (f) the weight ω̂ makes
the operator T : Lp(Ω, ω̂) → Lp(Ω, ω̂) continuous. Thus, using Theorem 3.1 we can decom-
pose the integrable function f as

f =
∑
t∈Γ

ft − f̃t,

where ft − f̃t ∈ Lp(Ωt, ω̂), with vanishing mean value, and∑
t∈Γ

(
ess inf
x∈Ωt

ω(x)

)p
‖ft − f̃t‖pLp(Ωt,ω̂) ≤

∑
t∈Γ

‖ft − f̃t‖pLp(Ωt,ωω̂) ≤ C2‖f‖pLp(Ω,ω̂),

where C2 = 2p
(
N + 2Mp

T

)
.

Note that the essential infimum of ω over Ωt is positive because of (d), then ft − f̃t
belongs to Lp(Ωt, ω̂) as we announced. Now, using condition (e) there exists a solution

ut ∈W p
0 (Ωt, ω̂)n of divut = ft − f̃t, with

‖Dut‖Lp(Ωt,ω̂) ≤M2‖ft − f̃t‖Lp(Ωt,ω̂),

where M2 is independent of t. Therefore, using requirement (c), the vector field u :=
∑

t∈Γ ut
is a solution of divu = f . Moreover, using (d)

‖Du‖pLp(Ω,ω̄ω̂) ≤ Np
∑
t∈Γ

‖Dut‖pLp(Ωt,ω̄ω̂) ≤ N
pMp

1

∑
t∈Γ

(
ess inf
x∈Ωt

ω(x)

)p
‖Dut‖pLp(Ωt,ω̂)

≤ NpMp
1M

p
2

∑
t∈Γ

(
ess inf
x∈Ωt

ω(x)

)p
‖ft − f̃t‖pLp(Ωt,ω̂)

≤ NpMp
1M

p
2 2p

(
N + 2Mp

T

)
‖f‖pLp(Ω,ω̂),

proving that u belongs to W 1,p(Ω, ω̄ω̂)n and the estimate claimed in the theorem.

Finally, let us prove that u belongs to C∞0 (Ω)n. Given ε > 0, using that
∑

t∈Γ ‖Dut‖pLp(Ωt,ω̄ω̂) <

∞, there exists a finite set Γ0 ⊂ Γ such that∑
t∈Γ\Γ0

‖Dut‖pLp(Ωt,ω̄ω̂) < N−p
ε

2
.

Now, for t ∈ Γ0, we take vt ∈ C∞0 (Ωt)
n such that

‖Dut −Dvt‖pLp(Ωt,ω̂) ≤ N
−pM−p1

(
ess inf
x∈Ωt

ω(x)

)−p ε

2m
,

where m is the cardinal of Γ0. Thus, using that each Ωt is included in Ω and Γ0 is finite,
v :=

∑
t∈Γ0

vt belongs to C∞0 (Ω)n and

‖Du−Dv‖pLp(Ω,ω̄ω̂)

≤ Np
∑

t∈Γ\Γ0

‖Dut‖pLp(Ωt,ω̄ω̂) +NpMp
1

∑
t∈Γ0

(
ess inf
x∈Ωt

ω(x)

)p
‖Dut −Dvt‖pLp(Ωt,ω̂) < ε,

completing the proof. �

In the next corollary we prove that Ω satisfies (div)p, with an estimate of the constant CΩ,

if it is possible to decompose Ω by a good enough collection of subdomains {Ωt}t∈Γ.

Corollary 3.1. Let Ω ⊂ Rn be a bounded domain for which there exists a decomposition
{Ωt}t∈Γ that fulfills (a), (b), (c) and (e) for ω̂ = 1 and 1 < p <∞ such that ω(x) ≥ 1

M1
for

all x ∈ Ω. Hence, Ω satisfies (div)p and its constant CΩ is bounded by

CΩ ≤ 2M1M2N
1+1/p

(
1 +

2p+1p

p− 1

)1/p

.
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Proof. This result is a consequence of the previous theorem using ω̂ = ω̄ = 1 and Lemma
3.1. �

4. Divergence problem on general domains

In this section, we show the existence of a solution in a weighted Sobolev space of the diver-
gence problem, divu = f , on an arbitrary bounded domain Ω ⊂ Rn. The constant involved
in the estimation of the solution is explicit and depends only on n and p. Furthermore, we
use Whitney cubes to decompose the domain Ω, and the weight ω that we obtain for this

decomposition depends locally on the ratio |Q|
|S(Q)| , where Q is a Whitney cube and S(Q) is

its shadow (defined in (4.11)). This type of ratios has been studied on some domains, for
instance domains whose quasi-hyperbolic metric satisfies a logarithmic growth condition. See
[17], [15] and [16] for more details.

In [10], the authors prove a similar result also for arbitrary bounded domains using an
atomic decomposition obtained from a weighted Poincaré inequality, where the weight is
related to the Euclidean geodesic distance in Ω.

LetW := {Qt}t∈Γ be a Whitney decomposition, i.e. a family of closed dyadic cubes whose
interiors are pairwise disjoints, which satisfies

(i) Ω =
⋃
t∈ΓQt,

(ii) diam(Qt) ≤ dist(Qt, ∂Ω) ≤ 4 diam(Qt),
(iii) 1

4 diam(Qs) ≤ diam(Qt) ≤ 4 diam(Qs), when Qs ∩Qt 6= ∅,
where diam(Q) denotes the diameter of Q. Moreover, given a constant ε ∈ (0, 1/4) which
is arbitrary but will be kept fixed in what follows, Q∗t denotes the open cube which has the
same center as Qt but is expanded by the factor 1 + ε. This collection of expanded cubes
satisfies that ∑

t∈Γ

χQ∗t (x) ≤ 12nχΩ, for all x ∈ Rn. (4.10)

Moreover, Q∗s intersects Qt if and only if Qs touches Qt. See [20] for details.
Now, let us take a Whitney cube Qa which will be distinguished from the rest. Then,

for each Qt in W we take a unique chain of cubes Ωa = Ωt0 ,Ωt1 , · · · ,Ωtk = Ωt connecting
Qa with Qt, such that for each 1 ≤ i ≤ k the intersection between Qti and Qti−1 is a n − 1
dimensional face of one of those cubes. In addition, we assume that k is minimal over this
type of chains and, using an inductive argument, that Ωa,Ωt1 , · · · ,Ωti is the chain taken for
each Ωti , with 1 ≤ i ≤ k.

Observe that using these chains connecting any Qt ∈ W with Qa in a unique way it is
possible to define a rooted tree structure over Γ. Indeed, we say that two vertices s, s′ ∈
Γ are connected by an edge if and only if Qs and Qs′ are consecutive cubes in a chain
Qa, Qt1 , · · · , Qtk = Qt, for some Qt. As it is expected, the root of Γ is the index a of the
distinguished cube Qa. In addition, a partial order � over Γ is inherited.

Now, we define the shadow S(Qt) of a cube Qt ∈ W as

S(Qt) :=
⋃
s�t

Q∗s. (4.11)

Theorem 4.1. Let Ω ⊂ Rn be an arbitrary bounded domain, and 1 < p < ∞. Given
f ∈ Lp0(Ω) there exists a vector field u ∈W 1,p

0 (Ω, ω̄)n solution of divu = f with the estimate

‖Du‖Lp(Ω,ω̄) ≤ Cp,n‖f‖Lp(Ω), (4.12)

where Cp,n depends only on n and p, and ω̄ is defined over the interior of Qs as

ω̄ := min
Qk∩Qs 6=∅

|Qk|
|S(Qk)|

.
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The expanded cubes Q∗s use in their definition ε := 2−7.

Proof. Let us observe that ω̄ is defined almost everywhere but it is sufficient in this context.
This result is a consequence of Theorem 3.2. Let us consider the decomposition {Ωt}t∈Γ

defined by Ωt := Q∗t with ε := 2−7. From (4.10), it follows that the overlapping of the
subdomains of this collection is bounded by N = 12n.

Now, let us define the collection {Bt}a6=t∈Γ. Given t in Γ \ {a} and its parent tp, the
intersectionQt∩Qtp is a n−1 dimensional face of one of those. Let us denote by ct the center of
that n−1 dimensional cube and observe that the length of its sides is greater than lt/4, where lt
is the length of the sides of Qt. Thus, if we define the distance d∞(x, y) := max1≤i≤n |xi−yi| it
follows that d∞(ct, Qs) ≥ lt/8 for any s 6= t, tp. Now, we define Bt as an open cube with center
in ct and sides with length l small enough in order to have the cube Bt included in Q∗t∩Q∗tp and

disjoint from Q∗s for all s 6= t, tp. It is known that ltp ≥ lt/4, then taking l = εlt/4 it follows
that Bt ⊂ Q∗t∩Q∗tp . In particular, as ε < 1 it can be seen that Bt ⊂ Qt∪Qtp . Hence, using that
Q∗s intersects Qk if and only if Qs touches Qk, we can assert that if Q∗s intersects Qt∪Qtp then

the common length of the sides of Qs is lesser than 16lt. Thus, d∞(Q∗s, c
t) ≥ lt/8− 16ltε/2.

Thus, it is sufficient to show that ε verifies that lt/8− 16ltε/2 > εlt/8. Hence, Bt ⊂ Ωt ∩Ωtp

and Bt ∩ Ωs = ∅ if s 6= t, tp, obtaining a collection {Bt}t6=a pairwise disjoint. Thus, the
collection {Ωt}t∈Γ of subdomains of Ω verifies conditions (a) and (b) in Subsection 3.1.

In order to prove condition (c) on page 7, we can see that for any x ∈ Ω the ball with center
x and radius 1

2d(x, ∂Ω) intersects only a finite number of Q∗s’s. Condition (e) is obtained by
observing that ω̂ = 1 and the subdomains in the decomposition are cubes thus the constants
CΩt are equal to each other (see Lemma 2.1). Finally, condition (f) has been proved in
Lemma 3.1, thus it only remains to prove (d).

Now, given t ∈ Γ , it can be observed that ω(x) 6= 1 over Qt only if x belongs to Bs with
s = t or sp = t. Thus, given x ∈ Qt it follows that

ω(x) =



|Bt|
|S(Qt)|

=
2−9n|Qt|
|S(Qt)|

if x ∈ Bt

|Bs|
|S(Qs)|

=
2−9n|Qs|
|S(Qs)|

≥ 2−11n|Qt|
|S(Qt)|

if x ∈ Bs with sp = t

1 otherwise.

Hence, using that Ωt is included in
⋃

Qs∩Qt 6=∅

Qs, it follows that

ess sup
x∈Ωt

ω̄(x) = max
Qs∩Qt 6=∅

ess sup
x∈Qs

ω̄(x) ≤ |Qt|
|S(Qt)|

≤ 211n ess inf
x∈Ωt

ω(x),

obtaining condition (e) with M1 = 211n. Thus, using Theorem 3.2 we obtain (4.12) with

Cp,n = 2CQ211n12n+n/p

(
1 +

2p+1p

p− 1

)1/p

,

where CQ is the constant in (1.1) for an arbitrary cube Q.
�

5. Divergence problem and Stokes equations on domains with an external
cusp

In this section we show the second application of our decomposition to prove the existence
of a weighted solution of divu = f on a class of n dimensional domains with an external cusp
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arbitrarily narrow. Similar domains were studied in [9] where the cusp is defined by a power
function xγ , with γ > 1.

Given a Lipschitz function ϕ : [0, a]→ R that satisfies the properties:

(i) ϕ(0) = 0, and ϕ(r) > 0 if x ∈ (0, a],
(ii) ϕ′(0) = 0, |ϕ′| ≤ K1,

(iii) ϕ(t)
t ≤ K2

ϕ(r)
r , for all 0 < t < r ≤ a,

we define the following domain with a cusp at the origin:

Ωϕ := {(x, y) ∈ R× Rn−1 : 0 < x < a and |y| < ϕ(x)} ⊂ Rn. (5.13)

The following are three examples of functions which verify (i), (ii) and (iii):

• ϕ(x) = xγ , with γ > 1.

• ϕ(x) = e−1/x2
in (0, a] and ϕ(0) = 0.

• ϕ(x) = xγ(2 + sin(x1−γ)) in (0, a], with γ > 1, and ϕ(0) = 0.

The Lipschitz condition in (ii) keeps ∂Ωϕ from having cusps different from the one at the
origin, and condition (iii) is used to solve a technical issue when κ in Theorem 5.1 is positive.

Let us start introducing a decreasing sequence in the interval (0, a] and some of its proper-
ties. This sequence will be used to define a decomposition of Ωϕ. Thus, we define inductively
a decreasing sequence {xi}i≥0 in (0, a] with x0 = a, and xi+1 the maximum number in (0, xi)
satisfying that ϕ(x) = xi − x. The well definition of this sequence is based on the continuity
of ϕ(x) +x, which satisfies that ϕ(0) + 0 < xi and ϕ(xi) +xi > xi, using that ϕ is continuous
and positive on (0, a], with ϕ(0) = 0. In addition, it can be seen that {xi}i≥0 decreases to 0.
Indeed, if {xi}i≥0 converges to x̄ ≥ 0, then

ϕ(x̄) = lim
i→∞

ϕ(xi+1) = lim
i→∞

xi − xi+1 = 0.

Hence, x̄ = 0.

Figure 1. A simple example with an increasing ϕ

Let us see some properties of this sequence. Taking xi+1 ≤ x ≤ xi, we can assert that

xi+1 ≤ x ≤ (K1 + 1)xi+1 (5.14)
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and
1

K2
ϕ(xi+1) ≤ ϕ(x) ≤ (K1 + 1)ϕ(xi+1). (5.15)

The first inequality in (5.14) holds by definition and the second one can be proved by
observing that

x ≤ xi = ϕ(xi+1) + xi+1 =
ϕ(xi+1)− ϕ(0)

xi+1 − 0
xi+1 + xi+1.

The second inequality in (5.15) follows from

|ϕ(x)− ϕ(xi+1)| ≤ K1(x− xi+1) ≤ K1(xi − xi+1) = K1ϕ(xi+1),

and the first one can be proved by

ϕ(xi+1) ≤ K2ϕ(x)
xi+1

x
≤ K2ϕ(x).

Now, we introduce the collection {Ωi}i∈N0 of subdomains of Ωϕ to be used with Theorem
3.2. Indeed, given i ∈ N0 we define

Ωi := {(x, y) ∈ Ωϕ : xi+2 < x < xi}. (5.16)

Note that in this case Γ = N0 where two vertices i and j are connected by an edge if and
only if |i − j| = 1. Moreover, if we take the root a = 0, the partial order � inherited from
this tree structure coincides with the total order ≤ of N0.

The following theorem is the main result of this section.

Theorem 5.1 (Divergence on cuspidal domains). Let Ωϕ ⊂ Rn be the domain defined in
(5.13), 1 < p < ∞ and κ ≥ 0. Given f ∈ Lp(Ω, $−κ), with vanishing mean value, there

exists a solution u in W 1,p
0 (Ωϕ, $

1−κ)n of divu = f satisfying that

‖Du‖Lp(Ωϕ,$1−κ) ≤ C‖f‖Lp(Ωϕ,$−κ), (5.17)

where $(x, y) =
ϕ(x)

x
, and C depends only on K1, K2, p, n and κ.

Proof. As we mentioned before this theorem is an application of Theorem 3.2. The collection
of subdomains {Ωi}i∈N0 has been defined in (5.16), and the weights ω̂, ω̄ : Ωϕ → R>0 are
defined by ω̄ := $ and ω̂ := $−κ. Observe that Ωi is indeed a subdomain of Ωϕ. Moreover,
$ ≤ K1 and κ ≥ 0, thus Lp(Ωϕ, $

−κ) ⊂ L1(Ωϕ). Then, it just remains to prove conditions
(a) to (f) on pages 4 and 7.

Just from the definition of the collections of subdomains it can be observed that conditions
(a) and (c) hold, with a constant N = 2. The collection {Bi}i≥1 defined below verifies (b):

Bi := Ωi ∩ Ωi−1 = {(x, y) ∈ Ωϕ : xi+1 < x < xi}.

Now, let us prove (d). The weight ω defined in (3.6) is equal to ω(x, y) = |Bi|
|Wi| over Bi,

where

Wi =
⋃
k≥i

Ωk = {(x, y) ∈ Ωϕ : x < xi}.

Thus, given (x, y) ∈ Bi, for i ≥ 1, using inequalities (5.14) and (5.15), and (iii), it follows
that

ω(x, y) =
|Bi|
|Wi|

≥
CK2,n ϕ(xi+1)n

CK2,n xiϕ(xi)n−1
≥ CK1,K2,n

ϕ(xi)

xi
.
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Now, given (x, y) ∈ Bi+1, and using that ϕ(xi+1)
xi+1

≥ 1
K1+1

ϕ(xi)
xi

obtained from (5.14) and (5.15),

we can conclude that

ω(x, y) =
|Bi+1|
|Wi+1|

≥ CK1,K2,n
ϕ(xi+1)

xi+1
≥ CK1,K2,n

ϕ(xi)

xi
.

Hence, using (iii) and the previous inequalities,

ess sup
x∈Ωi

$(x) ≤ K2
ϕ(xi)

xi
≤ CK1,K2,n ess inf

x∈Ωi
ω(x).

Now, let us prove (f), the continuity of the operator T and an estimation of its norm. In
order to simplify the notation we denote $(x) instead of $(x, y). The proof uses (iii), the
fact that κ ≥ 0, and the continuity of T without weight shown in Lemma 3.1. Indeed,∫

Ωϕ

|Tg(x, y)|p$−pκ(x) =
∑
i≥1

∫
Bi

$−pκ(x)

(
1

|Wi|

∫
Wi

|g|$−κ$κ

)p
≤

∑
i≥1

∫
Bi

$−pκ(x)Kpκ
2 $pκ(xi)

(
1

|Wi|

∫
Wi

|g|$−κ
)p

≤ K2pκ
2

∑
i≥1

(
$(xi)

$(xi+1)

)pκ ∫
Bi

(
1

|Wi|

∫
Wi

|g|$−κ
)p

≤ C
∑
i≥1

∫
Bi

(
1

|Wi|

∫
Wi

|g|$−κ
)p

≤ C‖g$−κ‖pLp(Ωϕ) = C‖g‖p
Lp(Ωϕ,$−κ)

,

where C depends only on K1, K2, p and κ.
Finally, it just remains to prove (e). Using (iii), (5.14) and (5.15), we obtain that

1

(K1 + 1)2

ϕ(xi)

xi
≤ ϕ(x)

x
≤ K2

ϕ(xi)

xi
,

for all xi+2 ≤ x ≤ xi. Thus, we can assume that $−κ is the constant function with value(
ϕ(xi)
xi

)−κ
over Ωi. Thus, it is enough to prove (e) when ω̂ = 1. The proof of this case is

shown in Lemma 5.1. �

The next result follows immediately from Theorem 5.1.

Theorem 5.2 (Stokes on cuspidal domains). Given Ωϕ ⊂ Rn the domain defined in (5.13),
h ∈ L2

0(Ωϕ, $
−1), and g ∈ H−1(Ωϕ)n. There exists a unique solution (u, p) ∈ H1

0 (Ωϕ)n ×
L2(Ωϕ, $) of (2.2), with

∫
Ωϕ
p$2 = 0. Moreover,

‖Du‖L2(Ωϕ) + ‖p‖L2(Ωϕ,$) ≤ C
(
‖g‖H−1(Ωϕ) + ‖h‖L2(Ωϕ,$−1)

)
,

where $(x, y) =
ϕ(x)

x
, and C depends only on Ωϕ.

Proof. By Theorem 5.1, there exists ṽ ∈ H1
0 (Ωϕ)n satisfying that div ṽ = h and the estimate

(5.17). Then, ∆ṽ ∈ H−1(Ωϕ)n. Now, using the Theorem stated on page 3, and Theorem 5.1,
we can conclude that there exists a unique solution (v, p) ∈ H1

0 (Ωϕ)n × L2(Ωϕ, $) of{
−∆v +∇p = g + ∆ṽ in Ω

divv = 0 in Ω,
(5.18)
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with
∫

Ωϕ
p$2 = 0, and

‖Dv‖L2(Ωϕ) + ‖p‖L2(Ωϕ,$) ≤ C
(
‖g‖H−1(Ωϕ) + ‖∆ṽ‖H−1(Ωϕ)

)
≤ C

(
‖g‖H−1(Ωϕ) + ‖f‖L2(Ωϕ,$)

)
.

Finally, (u, p) = (v + ṽ, p) is the solution mentioned in the theorem. �

Next, we prove a lemma used in the proof of Theorem 5.1.

Lemma 5.1. Let Ωi ⊂ Rn be, with i ≥ 0, the domain defined on (5.16), and 1 < p < ∞.
Then, Ωi satisfies (div)p and there exists a constant C depending only on K1, K2, n, and p
such that

CΩi ≤ C
for all i ≥ 0, where CΩi is the constant in (1.1).

Proof. Ωi is a Lipschitz domain, and it is well known that a domain of this type satisfies
(div)p. What this lemma states is the existence of an uniform upper bound of CΩi . The idea
of the proof of this result is to show that each Ωi can be written as the finite union of certain
star-shaped domains with respect to a ball (for which there exist estimates of the constants)
and then to apply Corollary 3.1. The number of domains in the union does not depend on i.

Let us recall the definition of this class of domains. A domain U is star-shaped with
respect to a ball B if and only if any segment with an end-point in U and the other one in
B is contained in U . This class of domains has the following estimate of the constant on the
divergence problem (1.1): if R denotes the diameter of U and ρ the radius of the ball B ⊂ U ,
the constant CU is bounded by

CU ≤ Cn,p
(
R

ρ

)n+1

. (5.19)

See Lemma III.3.1 in [13] for details.
Let us show the way to split Ωi into the finite union. Without loss of generality, we assume

that K1,K2 ≥ 1. Thus, from (5.14) and (5.15) it follows that

ϕ(xi+1) ≤ |xi − xi+2| ≤ 2K2ϕ(xi+1), (5.20)

and

1

2K1K2
ϕ(xi+1) ≤ ϕ(x) ≤ 2K1K2ϕ(xi+1), (5.21)

if x belongs to [xi+2, xi]. Next, we take a natural number m such that m > 16K2
1K

2
2

(this number m could be arbitrarily big but it is fixed) and the m + 1 equidistant points
r0 < r1 < · · · < rm, with r0 = xi+2 and rm = xi. Thus, for 1 ≤ j ≤ m, it follows that

1

m
ϕ(xi+1) ≤ |rj − rj−1| ≤

1

8K2
1K2

ϕ(xi+1). (5.22)

Thus, the collection of star-shaped subdomains of Ωi to be considered is {U1, · · · , Um−1}
where

Uj := {(x, y) ∈ Ωi : rj−1 < x < rj+1},
for 1 ≤ j ≤ m−1. The tree structure of the index set {1, · · · ,m−1} is the same that we have
defined on N0, where a = 1 is the root in this case. Moreover, we introduce the collection
{Bj}2≤j≤m−1 as

Bj := Uj ∩ Uj−1 = {(x, y) ∈ Ωi : rj−1 < x < rj}.
Thus, let us prove the hypothesis of Corollary 3.1. Conditions (a), (b) and (c) follow

easily with N = 2. From (5.20), (5.21) and (5.22), the measure of any Bj and the whole Ωi

are comparable to ϕ(xi+1)n. Thus, ω ≥ 1
M1

, where M1 depends only on K1,K2, n and m.
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Finally, we just have to prove (e) for ω̂ = 1. Let us show first that each Uj , for 1 ≤ j ≤
m − 1, is a star-shaped domain with respect to the ball Ûj with center (rj , 0) and radius

(rj+1 − rj−1)/2. Thus, given (x, y) ∈ Ûj , (x̃, ỹ) ∈ Uj , and s ∈ (0, 1), we have to prove that

|sy + (1− s)ỹ| < ϕ(sx+ (1− s)x̃).

Figure 2. A more general ϕ and the star-shaped domain Uj

To simplify the notation we introduce M := ϕ(xi+1)/2K2K1. Thus,

|sy + (1− s)ỹ| < s
M

4K1
+ (1− s)ϕ(x̃) ≤ s

(
M

4
−M

)
+ ϕ(x̃)

≤ −3

4
sM + (ϕ(x̃)− ϕ(sx+ (1− s)x̃)) + ϕ(sx+ (1− s)x̃)

≤ −3

4
sM +K1s|x̃− x|+ ϕ(sx+ (1− s)x̃)

≤ −3

4
sM +K1s

M

2K1
+ ϕ(sx+ (1− s)x̃) < ϕ(sx+ (1− s)x̃).

Now, using (5.21) and (5.22), it can be seen that the diameter of Uj and the radius of Ûj are
comparable to ϕ(xi+1). Thus, using estimate (5.19), we can conclude that M2 in (e) can be
taken as a constant just depending on K1, K2, n and p. �

6. Divergence problem and Stokes equations on Hölder domains

In this section, we show the existence of a right inverse of the divergence operator and the
well-posedness of the Stokes equations on an arbitrary bounded Hölder-α domain Ω, i.e. the
boundary of Ω is locally the graph of a function that verifies |ϕ(x) − ϕ(x′)| ≤ Kϕ|x − x′|α,
for all x, x′. Thus, we start this section studying a domain in Rn defined by the graph of a
positive Hölder-α function ϕ : (−3l

2 , 3l
2 )n−1 → R, where 0 < α ≤ 1 and l > 0,

Ωϕ :=
{

(x, y) ∈ (−l/2, l/2)n−1 × R : 0 < y < ϕ(x)
}
⊂ Rn. (6.23)

In addition, we assume that ϕ ≥ 2l but ϕ 6≥ 3l, and l ≤ 1. Now, Ω is locally as Ωϕ, however
the distance to the boundary of Ω is not necessarily equivalent to the distance to the graph
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of ϕ defined over (−l/2, l/2)n−1. Thus, in order to solve this problem, we assume that Ω is
locally an expanded version of Ωϕ:

Ωϕ,E := {(x, y) ∈ (−3l/2, 3l/2)n−1 × R : y < ϕ(x)} ⊂ Rn. (6.24)

With this new approach of the problem, the distance to ∂Ω is equivalent to the distance to
G over Ωϕ, where

G := {(x, y) ∈ (−3l/2, 3l/2)n−1 × R : y = ϕ(x)}. (6.25)

Let us denote the distance to G as dG.

Lemma 6.1. Let Ωϕ be the domains defined on (6.23), 1 < p < ∞, and κ ≥ 0. Given

f ∈ Lp(Ωϕ, d
−κ
G ) with vanishing mean value, there exists a vector field u ∈W 1,p

0 (Ωϕ, d
1−α−κ
G )n

solution of divu = f such that

‖Du‖Lp(Ωϕ,d
1−α−κ
G ) ≤ C‖f‖Lp(Ωϕ,d

−κ
G ),

where C depends only on Kϕ, α, n, p and κ.

Proof. We start defining a collection of cubes in the style of the Whitney cubes, but in
this case the diameter of the cubes is comparable to dG instead of the distance to ∂Ωϕ.
The construction of this collection of open cubes {Qt}t∈Γ consists on piling cubes as boxes
one over the other one in such a way that the common length of the sides of each cube is
comparable to dG. The cubes are constructed level by level starting by level 0, which has just
the cube Qa = (−l2 ,

l
2)n−1 × (0, l). The construction of the cubes induces the tree structure

of the index set Γ where the parents of the index of the cubes in level m + 1 are the index
of the cubes in level m. Thus, suppose that we have defined all the cubes in level m, and let
Qt = Q′t × (yt,1, yt,2) be one of them. Let us denote by lt the common length of the sides of
Qt. Thus, all the cubes Qs’s in level m+ 1 with sp = t are defined in the following way: we
move up and then expand Qt to obtain Q = 3(Qt + (0, · · · , 0, lt)) thus

(i) if Q ⊂ Ωϕ,E there is just one cube Qs on level m + 1 such that sp = t and it is
Qs = Qt + (0, · · · , 0, lt),

(ii) if Q 6⊂ Ωϕ,E there are 2n−1 cubes Qs with sp = t and they are written as Qs =
Q′t,1/2 × (yt,2, yt,2 + lt/2), where Q′t,1/2 is one of cubes in Rn−1 obtained by splitting

Q′t into 2n−1 cubes with length of its sides equal to lt/2.

See figure 3 for an example of the construction.
Note that the common length of the sides of the cubes {Qt}t∈Γ decreases with respect to

the order � inherited from the tree. Indeed,

lt ≤ ls if t � s. (6.26)

Let us show another property satisfied by this collection. Given Qt, it satisfies

lt ≤ dist(Qt, G) ≤ Cn lt. (6.27)

The first inequality follows from the definition. To prove the second one, note that there
exists Qs with s � t and ls = 2lt such that 3(Qs + (0, · · · , 0, ls)) 6⊂ Ωϕ,E . Thus, following
the notation Qs = Q′s × (ys,1, ys,2) and Qt = Q′t × (yt,1, yt,2), we can assert that there exists
xs ∈ 3Q′s such that ϕ(xs) < ys,2 + 2ls ≤ yt,1 + 4lt.

On the other hand, ϕ ≥ yt,1 +2lt in Q′t, and Q′t ⊆ Q′s. Thus, using the convexity of 3Q′s and
the continuity of ϕ, there is another point in 3Q′s, let us represent it with the same notation
xs, such that

yt,1 + 2lt ≤ ϕ(xs) ≤ yt,1 + 4lt. (6.28)

Observe that any point in Q′t has a distance to xs less than the diameter of 3Q′s, which
equals 6

√
n− 1 lt. Thus,
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Figure 3. Under the graph of a Hölder-α function

dist(Qt, G) ≤ dist(Qt, (xs, ϕ(xs))) ≤
√
diam(3Q′s)

2 + (3lt)2 ≤ 3
√

4n− 3 lt.

Now, we are ready to define the collection {Ωt}t∈Γ of subdomains of Ωϕ to apply Theorem
3.2. The first subdomain Ωa is the cube Qa, and the other ones are the n dimensional
rectangles defined by

Ωt := Q′t × (yt,1 −
1

2
lt, yt,2), (6.29)

where Qt = Q′t × (yt,1, yt,2). Observe that yt,2 = yt,1 + lt.
It can be seen that conditions (a) and (c) are valid, with a constant N = 2. Indeed,

Ωt ∩ Ωs 6= ∅ for t 6= s if and only if one index is the parent of the other one.
Next, if we define the collection {Bt}t6=a as

Bt := Ωt ∩ Ωtp = Q′t × (yt,1 −
1

2
lt, yt,1),

(b) follows.
Now, let us show that (d) is verified with ω̄ := d1−α

G . In order to estimate ω, we take the
point xs ∈ Rn−1 that verifies (6.28). Then , for all xt ∈ Q′t it follows that

|ϕ(xt)| ≤ |ϕ(xt)− ϕ(xs)|+ |ϕ(xs)| ≤ Cn,αKϕl
α
t + 4lt + yt,1.

Thus, |Wt| ≤ Cn,α(Kϕ + l1−αt )ln−1+α
t and |Bt| = 1

2 l
n
t . Then, given s ∈ Γ with sp = t, we

have that |Ws| ≤ |Wt| and |Bs| ≥ 2−n|Bt|. Thus,

ω(x, y) ≥ Cn,α
(Kϕ + ln−1+α)

l1−αt =
Cn,α

(Kϕ + ln−1+α)
d1−α
G ,

if (x, y) belong to Ωt. Then,

ess inf
(x,y)∈Ωt

ω(x, y) ≥ Cn,α
(Kϕ + ln−1+α)

l1−αt ≥ ess sup
(x,y)∈Ωt

Cn,α
(Kϕ + ln−1+α)

d1−α
G (x, y),
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proving (d) with a constant M1 depending only on Kϕ, n, α and l.
In order to study (e) we take ω̂ := d−κG . Using that κ ≥ 0 and dG is bounded over Ωϕ, it

follows that Lp(Ωϕ, d
−κ
G ) ⊂ L1(Ωϕ). Next, from (6.27) we have that 1

2 lt ≤ dist(Ωt, G) ≤ Cn lt,
hence we can assume that d1−α

G is constant over Ωt reducing the problem to the case κ = 0.
Now, Ωt, with t 6= a, is a translate of (0, lt)

n−1 × (0, 3lt/2), thus, using Lemma 2.1, we can
assert that Ωt satisfies (div)p with a constant depending only on n.

Finally, condition (f) follows from (6.26) and Lemma 3.1. Moreover, it can be observed
that dG ≤ Cnls in Ωs and ls ≤ lt if s � t, hence dG ≤ Cnlt over Wt.

Now, given g ∈ Lp(Ωϕ, d
−κ
G ) the function gd−κG belongs to Lp(Ωϕ), and using Lemma 3.1,

we have ∫
Ω
|Tg|pd−pκG =

∑
t6=a

∫
Bt

d−pκG

(
1

|Wt|

∫
Wt

|g|d−κG dκG

)p
≤ Cn,p,κ

∑
t6=a

∫
Bt

d−pκG lpκt

(
1

|Wt|

∫
Wt

|g|d−κG

)p
= Cn,p,κ

∑
t6=a

∫
Bt

(
1

|Wt|

∫
Wt

|g|d−κG

)p
≤ cn,p,κ‖gd−κG ‖Lp(Ωϕ),

proving the lemma. �

Theorem 6.1 (Divergence on Hölder-α domains). Let Ω ⊂ Rn be a bounded Hölder-α do-
main, and 1 < p < ∞. Given f ∈ Lp0(Ω, d−κ), with d the distance to ∂Ω and κ ≥ 0, there

exists a vector field u ∈W 1,p
0 (Ω, d1−α−κ)n solution of divu = f with estimate

‖Du‖Lp(Ω,d1−α−κ) ≤ C‖f‖Lp(Ω,d−κ),

where C does not depend on f .

Proof. Ω is a Hölder-α domain, thus ∂Ω is locally the graph of a Hölder-α function, after
taking a rigid movement. In fact, we can assume that ∂Ω can be covered by a finite collection
of open sets {Ui}1≤i≤m such that Ωi := Ui ∩ Ω is in the form (6.23), where the extended
domain in (6.24) is the intersection of another open set Vi ⊃ Ui with Ω. The reason to
consider these V ′i s is just to have d locally comparable to dG. Also, it can be assumed that
the finite collection {Ωi} is minimal in the sense that for each 1 ≤ i ≤ m the set Ωi \

⋃
j 6=i Uj

has a positive Lebesgue measure. Now, let us take a Lipschitz domain Ω0 ⊂⊂ Ω such that
Bi := (Ωi ∩ U0) \

⋃
j 6=i Uj has a positive Lebesgue measure and ∪mi=0Ωi = Ω.

Let us define the finite collection {Ωi}0≤i≤m. The tree structure of the index set Γ =
{0, 1, · · · ,m} is defined in such a way that two nodes i and j are connected by an edge if and
only if one of those is the root a = 0. Thus, the partial order is given by i � j if and only if
i = 0.

The proof of this theorem follows the idea used to prove Theorem 3.2 with a minor difference
in condition (e). In this case, the condition has two different weights and it can be stated as:
given g ∈ Lp(Ωt, d

−κ) with vanishing mean value there is a solution v ∈ W p
0 (Ωt, d

1−α−κ)n of
divv = g with

‖Dv‖Lp(Ωt,d−κ) ≤M2‖g‖Lp(Ωt,d1−α−κ)

for all t ∈ Γ, where the positive constant M2 does not depend on t. This condition was proved
in Lemma 6.1.

Now, note that ω takes finite different positive values, thus the weight ω̄ can be assumed
constant over Ω obtaining (d). On the other hand, the operator T has its support in Ω0,
which is compactly contained in Ω. Thus, the weight ω̂ := d1−α−κ can be assumed constant.
Hence, from Lemma 3.1, the operator T : Lp(Ω, d1−α−κ)→ Lp(Ω, d1−α−κ) is continuous and
(f) is satisfied.
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It can be noted that condition (a), (b) and (c) can be easily verified from the definition
of the collection of subdomains and it finiteness. Thus, the proof goes as in Theorem 3.2. �

In the last theorem we show the well-posedness of the Stokes equations on bounded Hölder-
α domains.

Theorem 6.2 (Stokes on Hölder-α domains). Given Ω ⊂ Rn a bounded Hölder-α domain,
and two functions h ∈ L2

0(Ω, dα−1), and g ∈ H−1(Ω)n. Then, there exists a unique solution

(u, p) ∈ H1
0 (Ω)n × L2(Ω, d1−α) of (2.2) with

∫
Ω pd

2(1−α) = 0. Moreover,

‖Du‖L2(Ω) + ‖p‖L2(Ω,d1−α) ≤ C
(
‖g‖H−1(Ω) + ‖h‖L2(Ω,dα−1)

)
, (6.30)

where d is the distance to ∂Ω, and C depends only on Ω.

Proof. The proof of this theorem follows the same idea as the one in the proof of Theorem
5.2. �
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[9] R. Durán, and F. López Garćıa, Solutions of the divergence and Korn inequalities on domains with

an external cusp, Ann. Acad. Sci. Fenn. Math. 35(2) (2010), pp. 421-438.
[10] R. G. Durán, M. A. Muschietti, E. Russ, and P. Tchamitchian, Divergence operator and Poincaré
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Poincaré inequality, arXiv:1307.1340.
[15] R. Jiang, and A. Kauranen, A note on “Quasihyperbolic boundary conditions and Poincaré do-
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