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ON THE WEIGHTED FRACTIONAL
POINCARÉ-TYPE INEQUALITIES

BY

RITVA HURRI-SYRJÄNEN (Helsinki) and
FERNANDO LÓPEZ-GARCÍA (Pomona, CA)

Abstract. Weighted fractional Poincaré-type inequalities are proved on John do-
mains whenever the weights defined on the domain depend on the distance to the boundary
and to an arbitrary compact set in the boundary of the domain.

1. Introduction. In this article we study a version of the classical frac-
tional Poincaré-type inequality where the domain in the double integral in
the Gagliardo seminorm is replaced by a smaller one:

(1.1)
( �
Ω

|u(x)− uΩ|p dx
)1/p

≤ C
( �

Ω

�

B(x,τd(x))

|u(x)− u(y)|p

|x− y|n+sp
dy dx

)1/p

.

The parameter τ in the double integral belongs to (0, 1), and d(x) denotes
the distance from x to ∂Ω. Inequality (1.1) was introduced in [HV1]. It is
well-known that the classical fractional Poincaré inequality is valid for any
bounded domain, while this new version (1.1) depends on the geometry of
the domain. In [HV1] it was proved that (1.1) is valid on John domains, and
hence in particular on Lipschitz domains. An example of a domain where
(1.1) is not valid was also given. We refer the reader to [HV2] and [DIV]
where fractional Sobolev–Poincaré versions of (1.1) are considered. For a
weighted version of (1.1) where weights are power functions of the distance
to the boundary we refer to [DD].

The main result of our paper is the following theorem, where the distance
to an arbitrary set of the boundary has been added as a weight.

Theorem 1.1. Let Ω in Rn be a bounded John domain and 1 < p <∞.
Given a compact set F in ∂Ω, and parameters β ≥ 0 and s, τ ∈ (0, 1),
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there exists a constant C such that

(1.2)
( �
Ω

|u(x)− uΩ,ωp |pdF (x)pβ dx
)1/p

≤ C
( �

Ω

�

B(x,τd(x))

|u(x)− u(y)|p

|x− y|n+sp
d(x)psdF (x)pβ dy dx

)1/p

for all functions u ∈ Lp(Ω, d(x)pβ), where d(x) and dF (x) denote the dis-
tances from x to ∂Ω and F respectively, and uΩ,ωp is the weighted average
dF (Ω)−pβ

	
Ω u(z)dF (z)pβ dz.

In addition, the constant C in (1.2) can be written as

C = Cn,p,βτ
s−nKn+β,

where K is the geometric constant introduced in (5.1).

We would like to emphasize two points in this result: First, no extra
conditions are required for the compact set F in ∂Ω. The second point is
that the estimate shows how the constant depends on the given τ and a
certain geometric condition on the domain.

Some of the essential auxiliary parts for the proofs for weighted inequal-
ities are taken from [L1] and [L2], where a useful decomposition technique
was introduced by the second author. Our work was stimulated by the pa-
pers of Augusto C. Ponce [P1], [P2], [P3], where more general fractional
Poincaré inequalities for functions defined on Lipschitz domains were inves-
tigated.

The paper is organized as follows: In Section 2, we introduce some defi-
nitions and preliminary results. In Section 3, we show how to use decompo-
sitions of functions to extend the validity of certain inequalities on “simple
domains”, such as cubes, to more complex ones. We are interested in ex-
tending the results from cubes to John domains. In Section 4, we apply
the results obtained in the previous section to estimate the constant in the
unweighted version of (1.2) on cubes. Especially we are interested in how
the constant depends on τ . This result is auxiliary for our main theorem
but it might be of independent interest. In Section 5, we show the validity
of the weighted fractional Poincaré inequality studied in this paper with an
estimate of the constant, and a generalization to the type of inequalities
considered by Ponce.

2. Notation and preliminary results. Throughout the paper, Ω in
Rn is a bounded domain with n ≥ 2, 1 < p, q < ∞ with 1/p + 1/q = 1,
unless otherwise stated. Moreover, given a weight (i.e., a positive measurable
function) η : Ω → R and 1 ≤ r ≤ ∞, we denote by Lr(Ω, η) the space of
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Lebesgue measurable functions u : Ω → R equipped with the norm

‖u‖Lr(Ω,η) :=
( �
Ω

|u(x)|rη(x) dx
)1/r

if 1 ≤ r <∞, and

‖u‖L∞(Ω,η) := ess sup
x∈Ω

|u(x)η(x)|.

Finally, given a set A we denote by χA(x) its characteristic function.

Definition 2.1. Let C be the space of constant functions from Rn to R
and {Ut}t∈Γ a collection of open subsets of Ω that covers Ω except for a set
of Lebesgue measure zero; Γ is an index set. It also satisfies the additional
requirement that for each t ∈ Γ the set Ut intersects a finite number of
Us with s ∈ Γ . This collection {Ut}t∈Γ is called an open covering of Ω.
Given g ∈ L1(Ω) orthogonal to C (i.e.,

	
gϕ = 0 for all ϕ ∈ C), we say that

a collection {gt}t∈Γ of functions in L1(Ω) is a C-orthogonal decomposition
of g subordinate to {Ut}t∈Γ if the following three properties are satisfied:

(1) g =
∑

t∈Γ gt.
(2) supp(gt) ⊂ Ut for all t ∈ Γ .
(3)

	
Ut
gt = 0 for all t ∈ Γ .

We also refer to this collection of functions as a C-decomposition. We say
that {gt}t∈Γ is a finite C-decomposition if gt 6≡ 0 only for a finite number
of t ∈ Γ . Notice that condition (3) is equivalent to orthogonality to the
space C of constant functions. Indeed, this condition can be replaced by	
Ut
gt(x)ϕ(x) dx = 0 for all ϕ ∈ C and t ∈ Γ . Inequality (1.2) is based on the

operator of fractional derivatives whose zeros are the constant functions. In
other inequalities that involve other operators, such as the Korn inequality
with the symmetric part of a differential operator, the decompositions of
functions must be orthogonal to other spaces, for instance the space of in-
finitesimal rigid displacements in the case of the Korn inequality. We refer to
[L2], [L3] for examples of decompositions orthogonal to some other spaces.

Inequality (1.2), and similar Poincaré-type inequalities, can be written
in terms of a distance to the space C of constant functions by replacing its
left hand side by

inf
α∈C

( �
Ω

|u(x)− α|pdF (x)pβ dx
)1/p

.

The technique used in this paper may also be considered when the distances
to other vector spaces V are involved, in which case a V-orthogonal de-
composition of functions is required. We direct the reader to [L3] where a
generalized version of the Korn inequality is studied by using decomposition
of functions.
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Let us denote by G = (V,E) a graph with vertices V and edges E.
Graphs in this paper have neither multiple edges nor loops and the number
of vertices in V is at most countable.

A rooted tree (or simply a tree) is a connected graph G in which any
two vertices are connected by exactly one simple path, and a root is simply
a distinguished vertex a ∈ V . Moreover, if G = (V,E) is a rooted tree
with a root a, it is possible to define a partial order “�” in V as follows:
s � t if and only if the unique path connecting t to the root a passes
through s. The height or level of any t ∈ V is the number of vertices in
{s ∈ V : s � t with s 6= t}. The parent of a vertex t ∈ V is the vertex s such
that s � t and its height is one unit smaller than the height of t. We denote
the parent of t by tp. It can be seen that each t ∈ V different from the root
has a unique parent, but several elements in V could have the same parent.
Note that two vertices are connected by an edge (adjacent vertices) if one
is the parent of the other.

Definition 2.2. Let Ω ⊂ Rn be a bounded domain. We say that an open
covering {Ut}t∈Γ of Ω is a tree covering if it also satisfies the properties:

(1) χΩ(x) ≤
∑

t∈Γ χUt(x) ≤ NχΩ(x) for almost every x ∈ Ω, where N ≥ 1.
(2) Γ is the set of vertices of a rooted tree (Γ,E) with a root a.
(3) There is a collection {Bt}t6=a of pairwise disjoint open cubes with Bt ⊆

Ut ∩ Utp .

Definition 2.3. Given a tree covering {Ut}t∈Γ of Ω we define the fol-
lowing Hardy-type operator T on L1-functions:

Tg(x) :=
∑
a6=t∈Γ

χt(x)

|Wt|

�

Wt

|g|,(2.1)

where

(2.2) Wt :=
⋃
s�t

Us,

and χt is the characteristic function of Bt for all t 6= a.

We may refer to Wt as the shadow of Ut.

Note that the definition of T is based on the a priori choice of a tree
covering {Ut}t∈Γ of Ω. Thus, whenever T is mentioned in this paper, there
is a tree covering {Ut}t∈Γ of Ω explicitly or implicitly associated to it.

The following fundamental result was proved in [L2, Theorem 4.4]; it
shows the existence of a C-decomposition of functions subordinate to a tree
covering of the domain.

Theorem 2.4. Let Ω in Rn be a bounded domain with a tree cov-
ering {Ut}t∈Γ . Given g ∈ L1(Ω) such that

	
Ω gϕ = 0, for all ϕ ∈ C, and
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supp(g)∩Us 6= ∅ for a finite number of s ∈ Γ , there exists a C-decomposition
{gt}t∈Γ of g subordinate to {Ut}t∈Γ (refer to Definition 2.1).

Moreover, let t ∈ Γ . If x ∈ Bs where s = t or sp = t, then

|gt(x)| ≤ |g(x)|+ |Ws|
|Bs|

Tg(x),(2.3)

where Wt denotes the shadow of Ut defined in (2.2). Otherwise

|gt(x)| ≤ |g(x)|.(2.4)

Remark 2.5. The C-decomposition stated in Theorem 2.4 is finite. This
fact is not in the statement of [L2, Theorem 4.4] but it is easily deduced
from its proof.

In the next lemma, the continuity of the operator T is shown. We refer
the reader to [L1, Lemma 3.1] for a proof.

Lemma 2.6. The operator T : Lq(Ω) → Lq(Ω) defined in (2.1) is con-
tinuous for any 1 < q ≤ ∞. Moreover, its norm is bounded by

‖T‖Lq→Lq ≤ 2

(
qN

q − 1

)1/q

.

Here N is the overlapping constant from Definition 2.2.

If q = ∞, the above inequality means ‖T‖L∞→L∞ ≤ 2. Actually, for T
being an averaging operator, it can be easily observed that ‖T‖L∞→L∞ = 1,
but this does not affect our work. Notice that Lq(Ω,ω−q) ⊂ L1(Ω) if the
weight ω : Ω → R>0 has ωp ∈ L1(Ω). Then the operator T introduced in
Definition 2.3 for functions in L1(Ω) is well-defined in Lq(Ω,ω−q).

Lemma 2.7. Let Ω in Rn be a bounded domain, {Ut}t∈Γ a tree covering
of Ω and ω : Ω → R a weight which satisfies ωp ∈ L1(Ω). If

ess sup
y∈Wt

ω(y) ≤ C2 ess inf
x∈Bt

ω(x)(2.5)

for all a 6= t ∈ Γ , then the Hardy-type operator T defined in (2.1) and
subordinate to {Ut}t∈Γ is continuous from Lq(Ω,ω−q) to itself. Moreover,
its norm for 1 < q <∞ is bounded by

‖T‖L→L ≤ 2

(
qN

q − 1

)1/q

C2,

where L denotes Lq(Ω,ω−q), and N is the overlapping constant from Defi-
nition 2.2.
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Proof. Given g ∈ Lq(Ω,ω−q) we have
�

Ω

|Tg(x)|qω(x)−q dx =
�

Ω

ω(x)−q
∣∣∣∣ ∑
a6=t∈Γ

χt(x)

|Wt|

�

Wt

|g(y)| dy
∣∣∣∣q dx

=
�

Ω

∣∣∣∣ ∑
a6=t∈Γ

χt(x)

|Wt|
ω(x)−1

�

Wt

|g(y)|ω(y)−1ω(y) dy

∣∣∣∣q dx.

Now, condition (2.5) implies that ω(y) ≤ C2ω(x) for almost every x ∈ Bt
and y ∈Wt. Thus,
�

Ω

|Tg(x)|qω(x)−q dx

≤
�

Ω

∣∣∣∣ ∑
a6=t∈Γ

χt(x)

|Wt|
ω(x)−1C2ω(x)

�

Wt

|g(y)|ω(y)−1 dy

∣∣∣∣q dx

= Cq2

�

Ω

∣∣∣∣ ∑
a6=t∈Γ

χt(x)

|Wt|

�

Wt

|g(y)|ω(y)−1 dy

∣∣∣∣q dx = Cq2

�

Ω

|T (gω−1)|q dx.

Finally, gω−1 belongs to Lq(Ω) and T is continuous from Lq(Ω) to itself;
we refer to Lemma 2.6 to conclude that

�

Ω

|Tg(x)|qω(x)−q dx ≤ 2q
qN

q − 1
Cq2‖g‖

q
Lq(Ω,ω−q).

3. A decomposition and fractional Poincaré inequalities. Let Ω
in Rn be an arbitrary bounded domain and {Ut}t∈Γ an open covering of Ω.
The weight ω : Ω → R>0 satisfies ωp ∈ L1(Ω). In addition, uΩ denotes the
average |Ω|−1

	
Ω u(z) dz. For weighted spaces of functions, uΩ,ω represents

the weighted average (ω(Ω))−1
	
Ω u(z)ω(z) dz, where ω(Ω) :=

	
Ω ω(z) dz.

Now, given a bounded domain U in Rn and a nonnegative measurable
function µ : U × U → R we introduce the Poincaré-type inequality

inf
c∈R
‖u− c‖Lp(U,ωp) ≤ C

( �
U

�

U

|u(x)− u(y)|pµ(x, y) dy dx
)1/p

,(3.1)

where u ∈ Lp(U, ωp). Notice that the right hand side might be infinite. The
validity of (3.1) depends on U , p, µ and ω. The function µ(x, y) might be
zero, but ω(x) is strictly positive almost everywhere in Ω.

Let us mention three examples.

Examples 3.1. (1) The unweighted fractional Poincaré inequality with
µ(x, y) = 1/|x− y|n+sp, where s ∈ (0, 1), is the classical fractional Poincaré
inequality, which is clearly valid for any bounded domain.

(2) If µ(x, y) = χBx(y)/|x− y|n+sp, where Bx is the ball centered at x
with radius τd(x) for s, τ ∈ (0, 1), then the inequality represents a more
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recently studied fractional Poincaré inequality whose validity depends on
the geometry of the domain (refer to [HV1] for details).

(3) Finally, µ(x, y) = ρ(|x− y|)/|x− y|p, where ρ is a certain nonnega-
tive radial function, yields another inequality which has also been studied
recently (refer to [P1] for details).

Inequality (3.1) deals with an estimation of the distance to C of an ar-
bitrary function u in Lp(Ω,ωp). The local-to-global argument used in this
paper to study Poincaré-type inequalities is based on the fact that Lp(Ω,ωp)
is the dual space of Lq(Ω,ω−q) and on the existence of decompositions of
functions in Lq(Ω,ω−q) orthogonal to C. Let us properly define this set and
a subspace:

W :=
{
g ∈ Lq(Ω,ω−q) :

�
gϕ = 0 for all ϕ ∈ C

}
,(3.2)

W0 := {g ∈ W : supp(g) intersects a finite number of Ut}.(3.3)

The integrability of ωp implies that Lq(Ω,ω−q) ⊂ L1(Ω); then W and
W0 are well-defined. For a similiar condition we refer to [KO]. Following
Remark 2.5, the C-decomposition of functions inW0 stated in Theorem 2.4 is
finite, which is not valid in general for functions inW. This property satisfied
by functions in W0 simplifies the proof of Lemma 3.3, which motivates the
definition of this space.

Now, we introduce the spaces

(3.4)
W ⊕ ωpC = {g + αωp : g ∈ W and α ∈ C},

S :=W0 ⊕ ωpC = {g + αωp : g ∈ W0 and α ∈ C}.

It is not difficult to observe that Lq(Ω,ω−q) =W⊕ωpC and S is a subspace
of Lq(Ω,ω−q). The following lemma, proved in [L2, Lemma 3.1], states that
S is also dense in Lq(Ω,ω−q), and uses in its proof the requirement that for
each t ∈ Γ the set Ut intersects a finite number of Us with s ∈ Γ .

Lemma 3.2. Suppose that ωp ∈ L1(Ω). The space S is dense in
Lq(Ω,ω−q). Moreover, if g + αωp is an element in S, then

‖g‖Lq(Ω,ω−q) ≤ 2‖g + αωp‖Lq(Ω,ω−q).

Lemma 3.3. Suppose that ωp ∈ L1(Ω). If there exists an open covering
{Ut}t∈Γ of Ω such that (3.1) is valid on Ut for all t ∈ Γ , with a uniform
constant C1, and there exists a finite C-orthogonal decomposition of any
function g in W0 subordinate to {Ut}t∈Γ , with the estimate∑

t∈Γ
‖gt‖qLq(Ut,ω−q) ≤ C

q
0‖g‖

q
Lq(Ω,ω−q),
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then there exists a constant C such that

(3.5) ‖u− uΩ,ωp‖Lp(Ω,ωp) ≤ C
(∑
t∈Γ

�

Ut

�

Ut

|u(x)− u(y)|pµ(x, y) dy dx
)1/p

for any u ∈ Lp(Ω,ωp). Moreover, C = 2C0C1 works in (3.5).

Proof. Without loss of generality we can assume that uΩ,ωp = 0. We use
Lemma 3.2 to estimate the norm on the left hand side of (3.5) by duality.
Thus, let g + ωpψ be an arbitrary function in S. Then, by using the finite
C-orthogonal decomposition of g, we conclude that�

Ω

u(g + αωp) =
�

Ω

ug =
�

Ω

u
∑
t∈Γ

gt(3.6)

=
∑
t∈Γ

�

Ut

ugt =
∑
t∈Γ

�

Ut

(u− ct)gt.

Notice that the identity in the second line is valid for any t ∈ Γ and ct ∈ R.

Next, by using the Hölder inequality for (3.6), the fact that (3.1) is valid
on Ut with a uniform constant C1, and finally the Hölder inequality over the
sum, we obtain
�

Ω

u(g + αωp) ≤
∑
t∈Γ

inf
c∈R
‖u− c‖Lp(Ut,ωp)‖gt‖Lq(Ut,ω−q)

≤ C1

∑
t∈Γ

( �

Ut

�

Ut

|u(x)− u(y)|pµ(x, y) dy dx
)1/p
‖gt‖Lq(Ut,ω−q)

≤ C1

(∑
t∈Γ

�

Ut

�

Ut

|u(x)− u(y)|pµ(x, y) dy dx
)1/p(∑

t∈Γ
‖gt‖qLq(Ut,ω−q)

)1/q

≤ C0C1

(∑
t∈Γ

�

Ut

�

Ut

|u(x)− u(y)|pµ(x, y) dy dx
)1/p
‖g‖Lq(U,ω−q)

≤ 2C0C1

(∑
t∈Γ

�

Ut

�

Ut

|u(x)− u(y)|pµ(x, y) dy dx
)1/p
‖g + αωp‖Lq(U,ω−q).

Finally, as S is dense in Lq(Ω,ω−q), by taking the supremum over all the
functions g + αωp in S with ‖g + αωp‖Lq(Ω,ω−q) ≤ 1 we get the result.

4. On fractional Poincaré inequalities on cubes. In this section,
we use the results stated in the previous two sections to show a certain
fractional Poincaré inequality on an arbitrary cube Q. Thus, in order to
show the existence of the C-decomposition, which is used later to apply
Lemma 3.3, we define a tree covering {Ut}t∈Γ of Q. This covering is only
used in this section and for cubes. In the following section, we work with
a different bounded domain, an arbitrary bounded John domain, which re-
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quires a different covering. However, let us warn the reader that we will keep
the notation {Ut}t∈Γ used in Section 3.

The local inequality stated in the following proposition is well-known.
We refer the reader to [DD] for its proof.

Proposition 4.1. The fractional Poincaré inequality

inf
c∈R
‖u(x)− c‖Lp(U) ≤

(
diam(U)n+sp

|U |

�

U

�

U

|u(y)− u(x)|p

|y − x|n+sp
dy dx

)1/p

holds for any bounded domain U in Rn and 1 ≤ p <∞.

The following proposition is a special case of [HV1, Lemma 2.2]. In the
present paper, we give a different proof which lets us estimate the depen-
dence of the constant with respect to τ .

Proposition 4.2. Let Q in Rn be a cube with side length l(Q) = L, let
1 < p <∞ and τ ∈ (0, 1). Then

inf
c∈R
‖u(x)− c‖Lp(Q) ≤ Cn,p τ s−nLs

( �

Q

�

Q∩B(x,τL)

|u(y)− u(x)|p

|y − x|n+sp
dy dx

)1/p

,

where Cn,p depends only on n and p.

Proof. This result follows from Lemma 3.3 applied to Q, where µ(x, y) =
1/|x− y|n+sp and ω ≡ 1. So, let us start by defining an appropriate tree
covering of Q to obtain, via Theorem 2.4 and Remark 2.5, a finite C-decom-
position of any function in W0. Let m ∈ N be such that

√
n+ 3/τ < m ≤

1 +
√
n+ 3/τ and {At}t∈Γ the regular partition of Q with mn open cubes.

The side length of each cube is l(At) = L/m. In the example shown in
Figure 1, n = 2, m = 4, and the index set Γ has 16 elements.

Fig. 1. A tree covering of Q
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The tree covering of Q that we are looking for will be defined by enlarging
the sets in the covering {At}t∈Γ in an appropriate way but keeping the tree
structure of Γ , which is introduced in the following lines. Indeed, we pick a
cube Aa, whose index will be the root, and inductively define a tree structure
in Γ such that the unique chain connecting t to a is associated to a chain of
cubes connecting Qt to Qa, with minimal number of cubes, such that two
consecutive cubes share an n − 1-dimensional face. In Figure 1, the cube
Aa is in the lower left corner and the tree structure is represented by black
arrows that“descend” to the root. Now that Γ has a tree structure, we define
the tree covering {Ut}t∈Γ of Q with the rectangles Ut := (At ∪Atp)◦ if t 6= a
and Ua := Aa. (Here B◦ means the interior of B.) In order to have a better
understanding of the construction, notice that Ut ∩ Utp = Atp for all t 6= a.
Moreover, the index set Γ in the example with its tree structure has seven
levels, from level 0 to level 6 (refer to page 4 for definitions), with only one
index of level 6, whose rectangle Ut appears in Figure 1 in a different color.

Now, let us define the collection {Bt}t6=a of pairwise disjoint open cubes
Bt ⊆ Ut ∩ Utp or equivalently Bt ⊆ Atp . Given t 6= a, we split Atp into 3n

cubes with the same size. The open set Bt is the cube in the regular partition

of Atp whose closure intersects the n − 1-dimensional face Atp in At ∩ Atp .
There are 3n−1 cubes with that property but we pick Bt to be the one which
does not share any part with any other n− 1-dimensional face of Atp .

The cubes in {Bt}t6=a have side length equal to L/(3m) and are repre-
sented in Figure 1 by the 15 grey gradient small cubes. By construction, it
is easy to check that {Bt}t 6=a is a collection of pairwise disjoint open cubes
Bt ⊆ Ut ∩ Utp , hence {Ut}t∈Γ is a tree covering of Q with N = 2n (it could
also be less).

By Theorem 2.4, there is a finite C-decomposition {gt}t∈Γ of g =
∑

t∈Γ gt
subordinate to {Ut}t∈Γ which satisfies (2.3) and (2.4). Moreover, it can be
seen that |Ws|

|Bs|
≤ |Q|
|Bs|

= (3m)n

for all s ∈ Γ , thus
|gt(x)| ≤ |g(x)|+ (3m)nTg(x)

for all t ∈ Γ and x ∈ Ut. Next, using the continuity of T stated in Lemma 2.6
and some straightforward calculations we conclude∑

t∈Γ
‖gt‖qLq(Ut) ≤ 2q−1N

(
1 + (3m)nq2q

qN

q − 1

)
‖g‖qLq(Q)

≤ 22q+2n2q

q − 1
(3m)nq‖g‖qLq(Q)

≤ 22q+23nqn2q

q − 1
(1 +

√
n+ 3)nq τ−nq‖g‖qLq(Q).
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Hence, we have a finite C-decomposition of any function in W0 subordinate
to {Ut}t∈Γ with the constant in the estimate equal to

C0 =

(
22q+23nqn2q

q − 1

)1/q

(1 +
√
n+ 3)nτ−n.

Now, from Proposition 4.1 and using the fact that m >
√
n+ 3/τ and

diam(Ut) ≤
√
n+ 3L/m ≤ τL, we can conclude that inequality (3.1) is

valid on each Ut with a uniform constant

C1 = (n+ 3)n/(2p)(τL)s.

Thus, using Lemma 3.3 we can see that

‖u− uQ‖Lp(Q) ≤ 2C0C1

(∑
t∈Γ

�

Ut

�

Ut

|u(x)− u(y)|p

|x− y|n+sp
dy dx

)1/p

.

Since diam(Ut) ≤ τL, we have Ut ⊂ B(x, τL) for any x ∈ Ut; thus, using
the control on the overlapping of the tree covering given by N = 2n, we find
that

‖u− uQ‖Lp(Q) ≤ Cn,p τ−n(τL)s
( �

Q

�

Q∩B(x,τL)

|u(x)− u(y)|p

|x− y|n+sp
dy dx

)1/p

,

where

Cn,p = 2

(
22q+23nqn2q

q − 1

)1/q

(1 +
√
n+ 3)n(n+ 3)n/(2p)(2n)1/p.(4.1)

5. On fractional Poincaré inequalities on John domains. In this
section, we apply the results obtained in the previous sections to an arbitrary
bounded John domain Ω. Its definition is recalled below. The weight ω(x) is
defined as dF (x)β, where dF (x) denotes the distance from x to an arbitrary
compact set F in ∂Ω and β ≥ 0. In the particular case where F = ∂Ω,
d∂Ω(x) is simply denoted as d(x). Notice that ωp belongs to L1(Ω) for Ω
being bounded and β nonnegative.

A Whitney decomposition of Ω is a collection {Qt}t∈Γ of closed pairwise
disjoint dyadic cubes which satisfies:

1. Ω =
⋃
t∈Γ Qt.

2. diam(Qt) ≤ dist(Qt, ∂Ω) ≤ 4 diam(Qt).
3. 1

4 diam(Qs) ≤ diam(Qt) ≤ 4 diam(Qs) if Qs ∩Qt 6= ∅.
Here, dist(Qt, ∂Ω) is the Euclidean distance between Qt and the boundary
of Ω, denoted by ∂Ω. The diameter of the cube Qt is denoted by diam(Qt)
and the side length is written as `(Qt).

Two different cubes Qs and Qt with Qs ∩ Qt 6= ∅ are called neighbors.
This kind of covering exists for any proper open set in Rn (refer to [S, VI.1]
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for details). Moreover, each cube Qt has ≤ 12n neighbors. And if we fix
0 < ε < 1/4 and define (1 + ε)Qt as the cube with the same center as Qt
and side length (1 + ε)`(Qt), then (1 + ε)Qt touches (1 + ε)Qs if and only if
Qt and Qs are neighbors.

Given a Whitney decomposition {Qt}t∈Γ of Ω, an expanded Whitney
decomposition of Ω is the collection {Q∗t }t∈Γ of open cubes defined by

Q∗t := 9
8Q
◦
t .

Observe that this collection of cubes satisfies

χΩ(x) ≤ 12n
∑
t∈Γ

χQ∗t (x) ≤ (12n)2χΩ(x)

for all x ∈ Rn.
We recall the definition of a bounded John domain. A bounded domain

Ω in Rn is a John domain with constants a and b, 0 < a ≤ b < ∞, if there
is a point x0 in Ω such that for each point x in Ω there exists a rectifiable
curve γx in Ω, parametrized by its arc length written as length(γx), such
that

dist(γx(t), ∂Ω) ≥ a

length(γx)
t for all t ∈ [0, length(γx)]

and

length(γx) ≤ b.
Examples of John domains are convex domains, uniform domains, and also
domains with slits, for example B2(0, 1) \ [0, 1). The John property fails
in domains with zero angle outward spikes. John domains were introduced
by Fritz John [J]; they were later named John domains by O. Martio and
J. Sarvas.

There are other equivalent definitions of John domains. In these notes,
we are interested in a definition in the style of Boman chain condition
(see [BKL]) in terms of Whitney decompositions and trees. This equivalent
definition is introduced in [L2].

Definition 5.1. A bounded domain Ω in Rn is a John domain if for
any Whitney decomposition {Qt}t∈Γ there exists a constant K > 1 and a
tree structure of Γ , with a root a, that satisfies

Qs ⊆ KQt(5.1)

for any s, t ∈ Γ with s � t. In other words, the shadow of Qt written as Wt is
contained in KQt (see (2.2)). Moreover, the intersection of cubes associated
to adjacent indices, Qt and Qtp , is an n− 1-dimensional face of one of these
cubes.

Now, given a Whitney decomposition {Qt}t∈Γ of a bounded John domain
Ω in Rn, with constant K in the sense of (5.1), we define the tree covering
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{Ut}t∈Γ of expanded Whitney cubes by

Ut := Q∗t .(5.2)

The overlapping is bounded by N = 12n. Now, each open cube Bt in the
collection {Bt}t6=a shares the center with the n−1-dimensional face Qt∩Qtp
and has side length lt/64, where lt is the side length of Qt. It follows from
property (3) of the Whitney decomposition, and some calculations, that this
collection is pairwise disjoint and

Bt ⊂ Q∗t ∩Q∗tp = Ut ∩ Utp .

Moreover, it can be seen that

|Wt|
|Bt|

≤
(
K 9

8 lt
)n

(lt/64)n
= 72nKn(5.3)

for all t ∈ Γ with t 6= a.

Lemma 5.2. Let Ω in Rn be a John domain with constant K in the
sense of (5.1), F in ∂Ω a compact set and dF (x) the distance from x to F .
Then

sup
y∈Wt

dF (y) ≤ 3K
√
n inf
x∈Bt

dF (x) for all t ∈ Γ .

A similar inequality is also valid if we consider the weight dF (x)β with
a nonnegative power of the distance to F . Thus, this lemma implies, via
Lemma 2.7, the continuity of the operator T from Lq(Ω, d−qβF ) to itself with
an estimation of its constant. Then, there exists a C-decomposition with a
weighted estimate for a certain weight.

Proof of Lemma 5.2. Given t ∈ Γ with t 6= a, x ∈ Bt and y ∈ Wt :=⋃
s�t Us, we have to prove that dF (y) ≤ 3KdF (x). Notice that d(x) ≤ dF (x)

for all x ∈ Ω. Moreover, Qs ⊆ KQt for all s � t, then Wt ⊆ KUt. In
addition,

dF (y) ≤ |y − x|+ dF (x) ≤ diam(Wt) + dF (x)

≤ K diam(Ut) + dF (x) = K
9

8
diam(Qt) + dF (x).

Finally, using property (2) of the Whitney decomposition we deduce that
3Qt ⊂ Ω. Then, as

dist(Q∗t , ∂Ω) ≥ dist(Q∗t , (3Qt)
c) ≥ 15

16
lt,

some calculations yield

diam(Qt) ≤ 16

15

√
n dist(Q∗t , ∂Ω) ≤ 16

9

√
n dist(Q∗t , ∂Ω).
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Thus,

dF (y) ≤ 2K
√
n dist(Q∗t , ∂Ω) + dF (x)

≤ 2K
√
nd(x) + dF (x) ≤ 2K

√
ndF (x) + dF (x).

Now we are able to prove Theorem 1.1 and also to give the dependence
of the constant C on the given value of τ and on the constant K from (5.1).

Proof of Theorem 1.1. This result follows from Lemma 3.3 with the tree
covering {Ut}t∈Γ of Ω defined in (5.2), ω(x) := dF (x)β and

µ(x, y) :=
d(x)psdF (x)pβχB(x,τd(x))(y)

|x− y|n+sp
.(5.4)

Notice that ωp belongs to L1(Ω), as assumed at the beginning of Section 3.
The validity of (3.1) on a cube Ut, with a uniform constant C1, follows from
Proposition 4.2. Indeed, by using the fact that Ut is an expanded Whitney
cube by a factor 9/8 and F ⊆ ∂Ω, we deduce that

sup
x∈Ut

dF (x)β ≤ 2β inf
x∈Ut

dF (x)β.

Thus,

inf
c∈R
‖u(x)− c‖

Lp(Ut,d
pβ
F )

≤ Cn,pτ s−nLst 2β
( �

Ut

�

Ut

|u(x)− u(y)|p

|x− y|n+sp
dF (x)pβχB(x,τLt)(y) dy dx

)1/p

,

where Lt is the side length of Ut and Cn,p is the constant in (4.1).

Observe that Lt ≤ d(x) for all x ∈ Ut. Indeed, if x ∈ Qt, then

Lt =
9

8
lt <
√
n lt = diam(Qt) ≤ dist(Qt, ∂Ω) ≤ d(x),

where lt is the side length of Qt. Now, if x ∈ Ut \Qt, then
√
n lt ≤ dist(Qt, ∂Ω) ≤ dist(Ut, ∂Ω) +

1

16

√
n lt,

hence 15
16

√
n lt ≤ dist(Ut, ∂Ω) and

Lt =
9

8
lt <

15

16

√
n lt ≤ dist(Ut, ∂Ω) ≤ d(x).

Then the validity of Lt ≤ d(x) for all x ∈ Ut implies (3.1) for all Ut, where
µ(x, y) is the function defined in (5.4), and with the uniform constant

(5.5) C1 = Cn,pτ
s−n2β,

where Cn,p is as in (4.1).

Next, by Theorem 2.4, there is a finite C-decomposition {gt}t∈Γ subor-
dinate to {Ut}t∈Γ for any function g in W0 which satisfies (2.3) and (2.4).
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Moreover, using (5.3), it can be seen that

|gt(x)| ≤ |g(x)|+ (72K)nTg(x)

for all t ∈ Γ and x ∈ Ut.
Now, ω(x) := dF (x)β fulfills the hypothesis of Lemma 2.7 where the

constant in (2.5) is C2 = (3K
√
n)β (this assertion uses Lemma 5.2). Thus,

the operator T is continuous from L := Lq(Ω, d−qβF ) to itself with the norm

‖T‖L→L ≤ 2

(
qN

q − 1

)1/q

(3K
√
n)β.

Hence,∑
t∈Γ
‖gt‖q

Lq(Ut,d
−qβ
F )
≤ 2q−1

{(∑
t∈Γ

�

Ut

|g(x)|q dF (x)−qβ dx
)

+ (72K)qn
(∑
t∈Γ

�

Ut

|Tg(x)|q dF (x)−qβ dx
)}

≤ 2q−1N
{ �
Ω

|g(x)|q dF (x)−qβ dx+ (72K)qn
�

Ω

|Tg(x)|q dF (x)−qβ dx
}

≤ 2q−1N

{
1 + (72K)qn2q

qN

q − 1
(3K
√
n)qβ

}
‖g‖q

Lq(Ω,d−qβF )

≤ 4qN2(72K)qn
q

q − 1
(3K
√
n)qβ‖g‖q

Lq(Ω,d−qβF )

= 4q 122n 72qn (3
√
n)qβ

q

q − 1
Kq(n+β)‖g‖q

Lq(Ω,d−qβF )
.

Therefore, we have a C-decomposition subordinate to {Ut}t∈Γ with constant

(5.6) C0 = 4(12)2n/q(72)n(3
√
n)β
(

q

q − 1

)1/q

Kn+β.

Finally, inequality (3.5) and control on the overlapping of the tree covering
by N = 12n imply (1.2).

Remark 5.3. Notice that the proof of Theorem 1.1 provides an explicit
constant C = 2C0C1 for inequality (1.2), where C0 and C1 are given respec-
tively in (5.6) and (5.5).

The next result, similar to Proposition 4.1, follows from the Hölder in-
equality (equivalently, from Minkowski’s integral inequality).

Proposition 5.4. Let ρ : Rn \ {0} → R be a positive radial Lebesgue
measurable function which is increasing with respect to the radius. Then the
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fractional Poincaré-type inequality

(5.7) ‖u(x)− uU‖Lp(U)

≤ diam(U)n/pρ(diam(U))

|U |1/p

( �

U

�

U

|u(y)− u(x)|p

|y − x|nρ(|y − x|)p
dy dx

)1/p

holds for any bounded domain U in Rn and 1 < p < ∞, where uU :=
|U |−1

	
U u(y) dy.

Proof. We compute
�

U

|u(x)− uU |p dx

=
�

U

∣∣∣∣ 1

|U |

�

U

u(x)− u(y) dy

∣∣∣∣p dx ≤ 1

|U |

�

U

�

U

|u(x)− u(y)|p dy dx

≤ diam(U)nρ(diam(U))p

|U |

�

U

�

U

|u(x)− u(y)|p

|x− y|nρ(|x− y|)p
dy dx.

Remark 5.5. If ρ(x) = |x|s with s ∈ (0, 1), we recover the classical
fractional Poincaré inequality.

We generalize the fractional Poincaré inequality stated in Theorem 1.1
by replacing the fractional derivatives given by the power functions |x|s with
0 < s < 1 by general increasing and positive radial functions ρ|x|.

Theorem 5.6. Let Ω in Rn be a bounded John domain and 1 < p <∞.
Given an arbitrary compact set F in ∂Ω, a parameter β ≥ 0 and a positive
radial Lebesgue measurable function ρ : Rn\{0} → R increasing with respect
to the radius, there exists a constant C such that

(5.8)
( �
Ω

|u(x)− uΩ,ωp |pdF (x)pβ dx
)1/p

≤ C
( �

Ω

�

Ω∩B(x,d(x))

|u(x)− u(y)|p

|x− y|n(ρ|x− y|)p
ρ(2d(x))pdF (x)pβ dy dx

)1/p

for all u ∈ Lp(Ω, d(x)pβ). Here d(x) and dF (x) are the distances from x to
∂Ω and F respectively, and uΩ,ωp is the weighted average

dF (Ω)−pβ
�

Ω

u(z)dF (z)pβ dz.

In addition, the constant C in (5.8) can be written as

C = Cn,p,βK
n+β,

where K is the geometric constant introduced in (5.1).
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Proof. This proof mimics the one of Theorem 1.1 with Proposition 5.4 in-
stead of Proposition 4.2. Indeed, we will use again the tree covering {Ut}t∈Γ
of Ω defined in (5.2) and the weight ω(x) = dF (x)β, but, in this case µ(x, y)
is defined as

µ(x, y) :=
ρ(2d(x))pdF (x)pβ

|x− y|nρ(|x− y|)p
.

We only have to show that (3.1) is satisfied on Ut for all t, with a uniform
constant. This follows from (5.7) by using the inequality diam(Ut) ≤ 2d(x)
for all x ∈ Ut.
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